
l II t OF PY

Massachusetts Institute of Technology
Laboratory for Computer Science

July 1984- Progress Report
June 1985 22

00
N
N
N
NN

DTIC
ELECTE
SEP2 7 199011

DISTRIBUTION STATEMENT A

Apprmo,?d 'or public release;
Dist budon Unbrrits-d

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/PR-22

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

MIT Lab for Computer Science (if applicable) Office of Naval Research/Dept. of Navy

6c. ADDRESS (Cty, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

545 Technology Square Information Systems Program
Cambridge, MA 02139 Arlington, VA 22217

Ba. NAME OF FUNDING I SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
DARPA/DOD I

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
1400 Wilson Blvd. ELEMENT NO. NO. NO. ACCESSION NO.
Arlington, VA 22217

11. TITLE (Include Security Classfication)
MIT Laboratory for Computer Science Progress Report - 22

12. PERSONAL AUTHOR(S)

Dertouzos, M.L.
13a. TYPE OF REPORT 113b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) IS. PAGE COUNT

Technical /Proqress FROM 7/84 TO 6/_8_5 June 1985 266
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on revere if necesary and identify by block number)
FIELD GROUP SUB-GROUP Computer Architecture, Computer Science, Computer Systems,

Electrical Engineering, Networks.Theory of Computers,
Programming Languages

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Annual Report of Progress made at the MIT Laboratory for Computer Science Under Contracts:

a.) N00014-83k - 0125, Darpa Order 5602/2095
b.) N00014-84k - 0099, Darpa Order 4920

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
(3 UNCLASSIFIEDIUNLIMITED 0 SAME AS RPT. Q DTIC USERS Unclassified

NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Carol Nicolora (617) 253-5894
DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICAT ON OF THIS PAGE

All other editions are obsolete
Unc l OaifedAM" Offin US-w44

Unclassified

Massachusetts Institute of Technology
Laboratory for Computer Science

July 1984- Progress Report
June 1985 22

A ccession For

,.'IS GRA&I

DIlUC TAB

Una~nnounced El
Justificatio

By,

Distribution/

Availability Codes
Avail and/or

Dist Special

I I I nnI UU uu

The work reported herein was carried out within the Laboratory for Computer
Science, an MIT interdepartmental laboratory. During 1984-85 the principal financial
support of the Laboratory has come from the Defense Advanced Research Projects
Agency (DARPA). DARPA has been instrumental in supporting most of our research
over the last 22 years and is gratefully acknowledged here. Our overall support has
come from the following organizations:

" Defense Advanced Research Projects Agency;

" Department of Energy;

" National Institutes of Health, under National Library of Medicine;

" National Science Foundation;

" Office of Naval Research;

" United States Air Force;

" United States Army Research Office

" MIT controlled IBM funds under an IBM/MIT joint study contract;

Other support of a generally smaller level has come from Apple, Honeywell, Harris
Corporation, NASA, and Siemens.

p

TABLE OF CONTENTS a'

V INTRODUCTION 1
CLINICAL DECISION MAKING) 5

1. Introduction 7
2. Overview of Research Pro 8
3. Critica e roject 9
4. Explanation and Justification by Expert Programs 14
5. Program for the Management of Heart Failure 26
6. Tools for Clinical Decision Analysis 30

COMPUTATION STRUCTURES ") 39
1. Introduction 40
2. Static Dataflow Architecture 40
3. Processing Element Design 40
4. The Enable Memor _- - 42

.1.-a5 A -time Design Methodology 42
/" 6. Fault Detection and Recovery Strategies for a Static dataflow Machine 43

7. The Interaction of Routing Network Traffic and Dataflow Instruction 44
Scheduling

8. The Program Transforming Compiler 45
9. The VIM Project 47
10. Functional Language Implementation on the Connection Machine 50

DISTRIBUTED COMPUTER SYSTEMS' 55
1. Introduction 56
2. TheSWIFT Operating System 56
3. Projects in distributed P,' - - 57

_ts in-Network Protocol Design 58
5. Distributed Name Management 58
6. Extended Reach Networks 59

EDUCATIONAL COMPUTING' 65
1. Overview /66
2. Technology 66

ext 70
ive Studies 71

FUNCTIONAL LANGUAGES AND ARCHITECTURES 73

1. Introduction 75
2. Tagged-Token Da,_low Project._ 77

"3. 1Multiprocessor Emulation Facility Project 82
IMAGINATIVE SYSTEMS - 91

1. Introduction 29
2. The Boston Community Information System A 92
3. Imagine Programming Language 104

INFORMATION MECHANICS 117
1. Overview)118

2. Cellular Automata 7 118
f, ~p~~a i 'Enal Concepts to Natural Sciences 119

C 4. Reversible Information Processing: Foundations and Quantum Theory 120
5. Reversible Finite-Difference Equations 121
6. Scientific Exchanges 121

MESSAGE PASSING SEMANTICS) 125
1. Overview 126
2. Objectives) 126

3_- 126
Current Status 127

5. Future Plans 127
6. Resources and Participants 128

PROGRAMMING METHODOLOGY 129
1. Overview . 130
2. Implementation 130
3-.-Linguistic Isiies'ihi Dtlbuted rograms 132

/ 4. A Debugging Method Tailored to Atomic Actions 136Q 5. Distributed Version Management for Read-only Actions 138
6. Reaching Approximate Agreement in the Presence of Faults 143

REAL TIME SYSTEMS ' 153

1155,
2. Shema155

3 . -- , -162
4. VLSI Simulation 166

/ 5. Parallel Processing 171
6. The L Computer Architecture 173
7. Personal Workstations 177

THEORY OF COMPUTATION 179
1. Overview 181

. rew Revp 181
THEORY OF DISTRIBUTED SYSTEMS 191

1. Overview 192
2. Individual Progress Reports 192

PUBLICATIONS 211

1

ADMINISTRATION

Academic Staff

M. Dertouzos Director
M. Rivest Associate Director

Administrative Staff

P. Anderegg Assistant Administrative Officer
G. Brown Facilities Officer
A. Chow Fiscal Officer
J. Hynes Administrative Officer
M. Jones Fiscal Officer

Support Staff

L. Cava~laro B. Pierce
R. Cinq-Mars E. Profirio
R. Donahue M. Sensale
A. Kekejian D. Simmons
T. LoDuca C. Stevens
J. Mullins P. Vancini

T. Novak

INTRODUCTION

The MIT Laboratory for Computer Science (LCS) is an interdepartmental laboratory
whose principal goal is research in computer science and engineering.

Founded in 1963 as Project MAC (for Multiple Access Computer and Machine Aided
Cognition), the Laboratory developed the Compatible Time Sharing System (CTSS),
one of the first time shared systems in the world, and Multics -- an improved time
shared system that introduced several new concepts. These two major developments
stimulated research activities in the application of on-line computing to such diverse
disciplines as engineering, architecture, mathematics, biology, medicine, library science
and management. Since that time, the Laboratory's pursuits expanded, leading to
pioneering research in Expert Systems, Computer Networks, and Public Cryptography.
Today, the Laboratory's research spans a broad front of activities, grouped in four
major areas,'

The first such area entitled Knowledge Based Systems, volves making programs
more intelligent by capturing, representing, and using knov~e ge which is specific to the
problem domain. Examples are the use of expert medic nowledge for assistance in
diagnosis carried out by the Clinical Decision Makin oup; and the use of solid-state
circuit design knowledge for an expert VLSI (ver arge scale integration) design system
by the VLSI Design Project. Q l

Research in the second and largest area entitled Machines, Languages, and Systems
strives to discover and understand computing systems at both the hardware and
software levels that open new application areas and/or effect sizable improvements in
their ease of utilization and cost effectiveness. New research in this area includes the
architecture of very large multiprocessor machines (which tackle a single task, e.
speech understanding or weather analysis) by the Computation Structures, Funct al
Languages and Architectures, and Real Time Systems Research Groups. Co nuing
research includes the analysis and synthesis of languages and operating sy s for use
in large geographically distributed systems by the Programming Meth logy and Real
Time Systems Groups. Extended networks for such distributed envjonments as well as
distributed file servers are studied by the Distributed Comp ter Systems Group.
Finally, a key application involving the matching of news nd other community
information to individual needs, is pursued by the Imaginative S stems Group. N,

The Laboratory's third principal area of research, entitle Theor involves
exploration and development of theoretical foundations in computer sci nce, For
example, the Theory of Computation Group strives to understand ultimate limits in
space and time associated with various classes of algorithms; the semantics of
programming languages from both analytical and synthetic viewpoints; the logic of
programs; the utility of randomness in computation; concurrent computation and the

INTRODUCTION

links between mathematics an the privacy/authentication of computer-to-computer
messages. Other examples of the retical work involve the study of distributed systems
by the Theory of Distributed C mputer Systems Group, and the development of
effective algorithms for VLSI design.

The fourth area of research entitled Computers and People, ntails societal as well as
technical aspects of the interrelationships between people an machines. Examples
include the use of computers in the educational process by the 1 ducational Computing
Group; the use of interconnected computers for planning; as well gs the societal impact
of computers carried out by the Societal Implications Research Group.

During 1984-1985 the Laboratory continued its ambitious project of constructing a
Multiprocessor Emulation Facility consisting of 64 interconnected Lisp Machines, whose
purpose is to analyze the behavior of larger (up to several thousand machines)
multiprocessor systems. This facility, funded by the newly formed Strategic Computing
Program of the Defense Advanced Research Projects Agency, will enable our
experimenters to try out ideas before committing their proposed architectures to silicon
circuits. Another related development during this period has b en the continued
successful development of the MultiLisp language for multiproc ssor systems by
Professor Robert Halstead of the Real Time Systems Group. This language and the
Emulation Facility will be used in the coming year to assess th effectiveness of
multiprocessors in carrying out a variety of new applications.

Another important growth activity has been the evolution of a research and
development plan for the LCS Common System. Through this system, the Laboratory
aspires to interconnect heterogeneous computer resources. Curre tdistributed
computer systems entail networked, generally identical compu which P
intercommunicate at the relatively low level of exchanging text and other computer
files. The LCS Common System will deviate from this approach in two ways: First, it
will admit dissimilar computers, such as Lisp Machines and Vaxes. Second, it will
permit sharing data and procedures among these different environments so that our
researchers may build on each other's work, as if they were using a single time shared
computer. In addition, the system will enable access by every researcher to unique
laboratory resources such as the Multiprocessor Emulation Facility and the Expert VLSI
Design System. We expect that implementation of this major project will begin
January 1986 and will last for at least three years.

During 1984-1985 the Laboratory has continued its successful Distinguished Lecturer
Series with presentations by Steven Jobs, Chairman of Apple Computer; Professor
Roger Schank of Yale University; Professor Stephen Cook of the University of Toronto;
Bobby Inman, President of MCC; Professor Carver Mead of the California Institute of
Technology; and Kenneth Thompson, a co-developer of UNIX from AT&T Bell
Laboratories. Also during the same period the Laboratory employed twenty-four
undergraduates through the "Hacker Heaven" project which strives to identify
promising potential researchers in computer science.

2

INTRODUCTION

During 1985, the following members of the Laboratory were honored with awards:
David K. Gifford with the ITT Career Development Chair; Charles E. Leiserson with
the NSF Presidential Young Investigator Award; Barbara H. Liskov as NEC Professor
of Software Technology; and Sherry Turkle as Ms. Magazine's Woman of the Year.

Other changes include the appointment of Dr. Karen Sollins as Head of Computer
Resources, taking over from Dr. David Clark who will now lead the Laboratory's
Common System research effort. Arrivals included Assistant Professors Nikhil and
Weihl, and Visiting Scientist Richard Greenblatt. Departures during the same period
were Research Associate Benjamin Kuipers of the Clinical Decision Making Group to
the University of Texas, Mr. Albert Vezza, Head of the Programming Technology Group
who became Chairman and Chief Executive Officer of Infocom Inc., Professor J.C.R.
Licklider who is retiring, and Research Associates David Lebling and Christopher Reeve
who have also joined Infocom, Inc.

Our Laboratory consisted of 350 members -- 42 faculty, and academic research staff,
35 visitors and visiting faculty, 63 professional and support staff, 110 graduate and 100
undergraduate students -- organized into 16 research groups. Laboratory research
during 1984-85 was funded by 14 governmental and industrial organizations, of which
the Defense Advanced Research Projects Agency of the Department of Defense provided
over half of the total research funds.

Technical results of our research in 1984-85 were disseminated through publications in
the technical literature, through Technical Reports (TR331-TR355), and through
Technical Memoranda (TM279-TM290).

3

CLINICAL DECISION MAKING

Academic Staff

P. Szolovits, Group Leader

R. Patil

Collaborating Investigators

M. Criscitiello, M.D., Tufts-New England Medical Center Hospital
J. Dzierzanowski, Ph.D., Dept. of Orthopaedics, Harvard Medical School
R. Friedman, M.D., University Hospital, Boston University
W. Hardy, Ph.D., University Hospital, Boston University
J. Hollenberg, M.D., Tufts-New England Medical Center Hospital
J. Kassirer, M.D., Tufts-New England Medical Center Hospital
M. Klein, M.D., University Hospital, Boston University
S. Kurzrok, M.D., Tufts-New England Medical Center Hospital
J. Lau, M.D., Boston VA Medical Center
A. Levey, M.D., Tufts-New England Medical Center
A. Moskowitz, M.D., Tufts-New England Medical Center Hospital
S. Naimi, M.D., Tufts-New England Medical Center Hozpital
S. Pauker, M.D., Tufts-New England Medical Center
W. Schwartz, M.D., Tufts-New England School of Medicine
L. Widman, M.D., Case Western Reserve University Medical School

Research Staff

G. Burke W. Long
C. Eliot T. McNerney
B. Kuipers

Graduate Students

H. Goldberger T. Russ
R. Granville E. Sachs
D. Hirsch D. Smit
P. Koton M. Wellman
R. Kunstaetter A. Yeh

CLINICAL DECISION MAKING

Undergraduate Students

J. Fearnside K-Y. Lai
S. Ferguson T-Y. Leung
M. Harvey D. Pachura
C. Kim S. Rao

Support Staff

R. Hegg

Visitors

C. Dede 0. Gascuel
D. De Roulet I. Kohane

CLINICAL DECISION MAKING

1. INTRODUCTION

The three main goaIs of the Clinical Decision Making Group are as follows:

1) cognition -- to improve methods of analyzing the reasoning of human
clinicians when they are faced with critical decision problems involving
significant risk and uncertainty,

2) explanation -- to develop new methods that permit computer programs to
explain their conclusions by arguing from basic medical facts and principles,
and

3) decision analysis -- to enhance and disseminate micro-computer based tools
that help perform clinical decision analyses.

This project is being carried out by an interdisciplinary and multi-institutional group
of researchers at MIT and the Tufts-New England Medical Center (T/NEMC). The
project corresponding to goal 1, above, was conducted principally by Drs. Jerome
P. Kassirer and Alan J. Moskowitz at T/NEMC and Dr. Benjamin Kuipers, who was a
Research Scientist at the MIT Laboratory for Computer Science (LCS) during the
1984-85 period. Project 2 has been conducted chiefly at LCS by Prof. Peter Szolovits,
Prof. Ramesh Patil, Dr. William J. Long, and their graduate student research assistants.
Project 3 was done mostly at T/NEMC by Dr. Stephen G. Pauker, Dr. Moskowitz and
their associates and trainees in the clinical decision making program. Because of our
ongoing close research relationship, the projects are not as distinct as this description
implies. Frequent meetings among all the participants, as well as interactions through
courses and seminars assures a close collaboration.

The intended beneficiaries of the results of this resource-related research project are
the "AI in Medicine" (AIM) community, as chiefly represented by the SUMEX-AIM
resource and other related research projects around the country. The techniquies being
developed, especially those related to goals 1 and 2, are critically needed components of
most medical consulting and critiquing programs. Within our own research laboratory,
results from both these efforts are already being applied in our project entitled "A
Program for the Management of Heart Failure." The programs and methods developed
toward goal 3 have been most extensively used in the clinical decision making service at
T/NEMC both in research and in patient care, and have been distributed to over 100
other users.

In the coming year we plan to continue the general path adopted for goals 1 and 2.
Our work on goal 3 has essentially been accomplished, and (as planned) will be
terminated. Dr. Kuipers has accepted a position as Associate Professo. in the Computer
Science Department at the University of Texas at Austin. He will continue to work
with us on this project, as he had started to do when he was on the faculty of the Tufts
University Mathematics Department.

7

CLINICAL DECISION MAKING

In the following section, we briefly review the major accomplishments of our project

during the past year, and in subsequent sections we report in more detail on our
progress and plans toward each of the three goals.

2. OVERVIEW OF RESEARCH PROGRESS

In the past year of work on the clinical cognition subproject, we have collected
transcripts from eight expert physicians solving difficult clinical problems for which a
formal decision analysis previously had been carried out. Four of these transcripts were
analyzed in detail using referring phrase analysis and assertional analysis, and the data
from some were incorporated into a frame structure. We also carried out an extensive
comparison between the problem solving approaches evident in the transcripts and the
formal decision analysis model. We presented these results at the meeting of the
Society for Medical Decision Making in November 1984, and we have prepared a draft
of a paper describing this research which we expect to submit to one of the cognitive

science journals in the near future.

In studying means of providing better explanation capabilities to medical expert
programs, we have pursued several lines of investigation all centered on the use of
deeper and more explicit models of various kinds of knowledge in the program. Prof.
Patil has begun to investigate the use of the NIKL knowledge representation formalism
for medical knowledge. This system differs from former knowledge representation
formalisms in that it has a very well-defined specific semantics and thus forces the
person developing the representation of any piece of knowledge to be precise and
explicit about all relationships in that knowledge. Ms. Phyllis Koton has completed a
comparative study of two means of encoding expertise about the interpretation of
genetics experiments, one empirical and the other based on more detailed models of the
operation of genetic mechanisms. These results will be presented in a paper at the
International Joint Conference on Artificial Intelligence (IJCAI) in August 1985. Mr.

Elisha Sacks has described a new means of analyzing systems described in causal terms
by an analysis of the mathematical form of their temporal behavior. In his Qualitative
Mathematical Reasoning (QMR) program, a system is analyzed in two stages: first a
mathematical description of each significant parameter is derived, and then the
qualitative behavior of that form is deduced. This work will also be reported in a paper
at the upcoming IJCAI conference. Mr. Michael Wellman has completed a Utility
Reasoning Program (URP) that has an explicit encoding of a large number of theorems
of utility theory and permits the investigation of partially-specified preference structures
of individuals faced with value-laden decisions. Dr. Long has continued to develop

means of showing a user the implications of given facts about a patient according to the
constraints of a causal model. Both text and graphical presentations have been
investigated as means of describing the results of analysis. A paper describing this
approach was presented at the 1984 Computers in Cardiology conference.

The decision analysis subproject has met its objectives, to develop a useful and easy-

8

CLINICAL DECISION MAKING

to-use set of tools for clinical decision analysis. This two year developmental project
proposed to improve a preliminary version of a decision tree analysis package
sufficiently to permit its distribution to other investigators. The original program
DECISION MAKER was developed on the Apple II computer and written in a dialect of
UCSD Pascal. It required the user to purchase a language card and the UCSD operating
system, which were substantial financial deterrents to dissemination. The IBM PC has
now become the preeminent computer in the world personal computer market so we
have directed our developmental efforts toward it and its compatibles. We found that
the use of the UCSD operating system continues to be a deterrent to dissemination and
have therefore converted to Turbo Pascal and now distribute object code. The current
product operates under MS-DOS.

Over the past two years we have extended the basic tree folding program in an
upward compatible way, adding a broad variety of new features that we found useful in
our own unit. We have also incorporated requests from users in beta test sites. The
current program exists in two versions: the more general version supports the IBM PC
and its compatibles with all standard displays and printers; a more specific version
supports only the PC with a color-graphics card and an Epson printer, but has more
powerful graphics display options and somewhat easier tree input. Both programs have
compatible file storage formats and include a detailed manual, limited on-line help and
a variety of new features such as cost-effectiveness analysis, Boolean control structure,
subtrees, extensive context-dependent debugging facilities, and Markov processes. We
have distributed some 100 copies of the programs, and it has been used by another 50
individuals working in and visiting our unit. Their suggestions have helped shape
development of the programs, which have been demonstrated at a variety of national
medical meetings and educational courses for physicians. A version of the program is
being developed, under separate funding, for the Apple Macintosh computer. It is being
incorporated into an undergraduate medical curriculum at several medical schools. The
program enabled construction of the largest medical Markov model to date as the basis
for NHLBI's consensus study on artificial hearts [5].

3. CRITICAL DECISION NODE PROJECT

The objective in this project, conducted principally by Drs. Kassirer and Moskowitz at
T/NEMC and Dr. Kuipers at LCS, is to describe the knowledge representations and
problem-solving methods employed by physicians making difficult management
decisions, involving considerable risk and uncertainty. We investigate the nature of
clinical expertise and attempt to characterize the development of probabilistic reasoning
by comparing the knowledge and problem-solving methods used across experimental
subjects differing substantially in expertise.

Our research method involves collecting actual reasoning protocols from a variety of
subjects and then carefully analyzing the transcript of such protocols.

9

CLINICAL DECISION MAKING

3.1. Protocol Acquisition

We have collected eight protocols over the last year, which will provide material for
testing our hypotheses about clinical problem-solving and for further characterizing the
behavior of expert physicians. We interviewed four academic pulmonary subspecialistsf
and tape recorded their responses to two case histories. The interviews lasted from two
to three hours each. The clinical case histories were written and presented to the
physician-subjects on cards, one paragraph at time. The first case involved the
management of an elderly man with acute pulmonary infiltrates and underlying
preleukemia; the second case involved the management of a man with an acute
myocardial infarction and an expanding abdominal aortic aneurysm. The subjects were
asked to read each paragraph and to do all of their thinking aloud. After the subjects
completed their spontaneous discussion about the case, the interviewer posed questions
to clarify the subjects' thoughts on the case material and to probe the reasoning
process. Each interview was transcribed verbatim.

3.2. Transcript Analysis

Our transcript analysis work has involved an extensive analysis of the behavior of
three expert physicians (pulmonologists) making management decisions for a desperately
ill patient with preleukemia, chest pain, fever, and an acute pulmonary infiltrative
process. The problem involved choosing between empiric treatment, no treatment, and
employing potentially dangerous testing to guide treatment of this patient. The
uncertainty in the etiology of the underlying disease process, the high risk associated
with gathering further information and the urgent need for immediate treatment of this
immunocompromised patient required probabilistic reasoning and careful attention to
several potential morbidities and competing mortality risks.

The most recent draft of our manuscript, "The Critical Decision Node,"[2]
summarizes the methodology that we have developed for protocol analysis and
delineates the insights that we derived from" analyzing the protocols mentioned here.

Research in transcript analysis proceeded in three steps: segmenting the transcript,
determining the framework of the transcribed reasoning process, and then identifying
the set of assertions being made by the subject.

Segmenting the Transcript: Each verbatim transcript was segmented into lines
and paragraphs which facilitated the subsequent analysis. The process involved
breaking up sentences so that only one or two pieces of a complex concept was
contained on a line, which frequenrtly spread a sentence over many lines. Paragraphs
were delineated as coherent chunkt zf narrative. Paragraph breaks were inserted with
each change of topic or style of reasoning. Each of the tMree transcripts were segmented
into roughly 1000 lines.

Determining the Conceptual Framework of the Reasoning Process:

10

CLINICAL DECISION MAKING

Referring Phrase Analysis: Referring phrase analysis identifies the set of referring
phrases in a protocol excerpt and defines a small natural universe of underlying
conceptual objects which can be the referents of those phrases. This universe
constitutes an ontology for the domain being discussed. The referring phrase analysis
that we performed involved three steps. 1) Each line in the transcript excerpts was
reviewed and the object phrases identified. These phrases are distinct from the wording
used to refer to them. 2) The object phrases were then characterized by their role in
the problem formulation. We specifically focused on phrases that had anything to do
with likelihoods, probabilities, possibilities or alternatives. Table three in "The Critical
Decision Node" [2], page 15, shows several lines of a segmented protocol extract with
the referring phrases underlined. The righthand column in that table gives the
classification of each phrase, which is explained in table three (page 16) of the same
manuscript. Each identified phrase was classified into one or more of a small set of
categories, according to the type of description of likelihood asserted. 3) The
classification system was tested by its ability to account cleanly and completely for the
set of referring phrases identified.

Our conclusions from the referring phrase analysis can be summarized as a set of
constraints for specifying a knowledge representation of the concept of likelihood.
Derived from observations of expert humans, such constraints are useful in the search
for an accurate model of human reasoning under conditions of uncertainty. Following
the human model may also be the best way to construct useful knowledge
representations for effective expert problem solving systems. The constraints are as
follows: All likelihood descriptions should be symbolic, as our analysis did not reveal
evidence of the storage of high resolution numerical values, or the cognitive uses of
arithmetic operators. There should also be at least two distinct representations for
probabilities; our analysis revealed categorical references, "fuzzy" values on an absolute
scale and ordinal references, relative value terms for pairs of probabilities, (e.g., greater
than, less than, equal to). Numerical values would only be used to specify interval
anchor points or focal values, for purposes of locating neighboring likelihoods. These
constraints can be combined with domain-specific and computational constraints which
will considerably aid our search for an accurate model of human reasoning under

uncertainty.

Determining The Content of The Knowledge Being Reasoned About:
Assertional Analysis: Assertional analysis identifies the set of assertions being made
in the excerpt about the objects identified by referring phrase analysis. A set of
relations on objects and connectives and operators on sentences are then defined to
express the content of the assertions. This constitutes an epistemology for the domain
being discussed.

We chose to represent the objects and their relations in a frame system, a data
structure frequently employed in expert system development. Figure 2-1 is an example
of a frame from our analysis of one of the transcripts. This structure has the advantage
of permitting the knowledge to be concisely stated and completely specified. It also

11

CLINICAL DECISION MAKING

makes it possible to ascertain that the associations encoded work correctly. Assertions
are also encoded in decision rules. Figure 2-2 is an example of one such rule. Features

of frames and rules facilitate the specification of a computer simulation of the reasoning

process, which is one measure of the completeness of the knowledge representation.

PROCEDURE (general)
PURPOSE: Dx, Rx or both
PATIENT: recipient of procedure
SITE: anatomical location
OUTCOME: (event, likelihood)
PREREQUISITES: set of conditions
INVASIVENESS: low ...high
INFORMATION-YIELD: (description, likelihood)
SPECIMEN-YIELD: fragment or large

PROCEDURE (transbronchoscopic)
IS-A: procedure
PURPOSE: Dx
SITE: lung
OUTCOME: (mortality, likelihood-b)
PREREQUISITES: (clot-status patient normal)

(general-health-status patient reasonable)
INVASIVENESS: low
INFORMATION-YIELD: (diagnostic-tissue, likelihood-d)

On the top is the general notion of a procedure, with slots for each procedure attribute.
The slot name is on the left, and the possible slot values are on the right. The slots
represent those attributes of procedures that the physician referenced in this transcript.
The bottom of the figure shows the transbronchoscopic frame, a specific instance of a
procedure. The slots associated with this procedure are the attributes that the
physician associated with this biopsy and are a subset of the slots seen above. Note
that there are attributes for the organ of interest, the risks of the procedure and the
information content of the result.

Figure 2-1: Procedure Frame

3.3. Comparison to Decision Analysis

We have compared the decision process seen in the protocols to a normative model of

decision making under uncertainty, namely decision analysis. We found the reasoning
process exhibited in the transcript to closely resemble the conceptual framework of

12

CLINICAL DECISION MAKING

IF Patient(Chest.x-ray) = patchy-infiltrate
Disease(caused-by) = microorganism
Microorganism
(identified-by) = morphology

THEN Procedure(diagnostic) = lung-bx

The above decision rule can interpreted as follows: if the patient has a patchy
pulmonary infiltrate and the disease is caused by a microorganism and the
microorganism can be identified by its morphologic characteristics, then a
transbronchial biopsy is recommended. While this rule is out of context and somewhat
simplified, the transcripts contain many such examples of decision rules.

Figure 2-2: Decision Rule

decision analysis but to employ a significantly different processing algorithm. A
detailed discussion of this comparison was presented at the Sixth Annual Meeting of the
Society of Medical Decision Making, November 1984, in Washington DC; an abstract of
the discussion will be published in Medical Decision Making Vol. 4, No. 3 [4].

3.4. Application of Results to the Teaching of Clinical Medicine

In addition, we intend to exploit the concepts generated from this research to develop
new teaching tools. Last year we reported on a teaching method based on the iterative
hypothesis-based approach to clinical problem solving used by expert physicians [1].
The basis for this teaching method was our work on diagnosis, using a research
methodology that involved interviews and transcript analysis. In the past year we have
extended this concept in a series of published reports in the journal, Hospital Practice.
In the coming year we intend to apply the principles learned in our studies of the
critical decision node to additional publications in this journal. We selected this journal
as the site of such teaching cases because it has an exceptionally large audience that
includes academic physicians, house officers, and medical students, and because it
publishes teaching materials of exceedingly high quality. We have agreed to publish one
teaching case each month.

3.5. Goals for 1985-86

Our goals for the coming year are twofold. We intend to continue protocol analysis so
that we may refine our model of reasoning under uncertainty and further characterize
clinical expertise. We will be looking at previously collected protocols of clinical
subspecialists solving problems within and outside their area of expertise, in hope of
delineating general purpose and domain specific problem-solving techniques. Because
our technique of protocol analysis is highly dependent on our obtaining fairly detailed

13

CLINICAL DECISION MAKING

exposes of the reasoning of our subjects, the collection of additional protocols may be
necessary. In these analyses we plan to focus on the progression and outcome of the
decision process, distinguishing the differences of agenda and conclusions among the
subjects. To accomplish this, we will be refining the technique of script analysis [2], a
technique designed to reveal the goal structure of the problem-solving process and the
subject's explanation strategy.

Secondly, in conjunction with our collaborator, Dr. Kuipers, we intend to work toward
specifying an implementation of a computational model of the reasoning process seen in
one of the transcripts. Our goal is to have the computational model reach the same
decision that the human expert did and to observe the intermediary states of the
decision process for comparison to observations made about the transcript. Because
most physician subjects verbalize only some of the knowledge that they use to reach
their decision, achieving this goal may require a second interview.

4. EXPLANATION AND JUSTIFICATION BY EXPERT PROGRAMS

The objective of this project, conducted chiefly by Profs. Szolovits and Patil, Dr.
Long, and their graduate student research assistants, is to develop a methodology for
providing appropriate explanations to the user for the reasoning provided by a medical
consultation system. These explanations should convey to the user the essential nature
of the assessments and conclusions provided by the system, thus making the reasoning
understandable. Our work began with the idea that by simply making explicit
reasoning steps of any program, it would surely lead to understandable explanations.
However, we have been drawn in this project to the conclusion that we must develop
and investigate new means of knowledge representation and reasoning for the programs
in order to make their behavior meaningful. As outlined in the overview Section 2, we
have undertaken five different projects to explore various aspects of this problem. Each
is discussed in the following sections.

4.1. New Representations of Basic Medical Knowledge

In most medical Al research projects, the particular form of knowledge representation
has not been considered critical so long as it was adequate to express the knowledge
that was essential to the operations of the program under study. As a result, many
incompatible forms of knowledge representation have been developed, differing in many
cases only for uninteresting, incidental reasons. In addition, and because the
representation formalism was not itself the object of study in these projects, the medical
representations have often lacked the integrity and clarity of state-of-the-art research
systems for knowledge representation. This has made the task of systematically
explaining the content and methods of such a knowledge base unnecessarily difficult.

To overcome these problems, we have begun to investigate the design of a schema for
representing common medical knowledge and to develop a knowledge base of medical

14

CLINICAL DECISION MAKING

facts to be shared by various programs and projects in (ultimately) several medical
domains. Such an approach should avoid wasteful duplication of efforts needed in
developing knowledge bases for individual projects, and it should ease the problems of
integrating programs in different medical sub-specialties. Key requirements for
successful implementation of this approach are that the knowledge representation
language should have a well specified semantics and that the knowledge encoded in such
a system be organized according to a well-developed epistemology.

We have chosen to use the NIKL knowledge representation system (a successor of KL-
ONE) for exploring these issues for the following reasons: First, it is one of the best
known and widely published knowledge representation systems, thus providing a
considerable advantage in communicating our ideas and sharing our knowledge base
with researchers in other centers. Second, it provides well specified and widely
researched semantics allowing us to encode medical knowledge with precision. Finally,
it allows for the organization of a knowledge base on multiple intertwined hierarchies
and provides an algorithm for automatically classifying any concept or query against the
lattice of concepts present in the knowledge base, making additions of new concepts to
the knowledge base as well as pattern matching against existing concepts in the
knowledge base efficient.

We have begun by reimplementing a small portion of the existing knowledge base of
the ABEL program. This knowledge base consists of the following components:

1) knowledge of the anatomy and physiology of the human body, including
knowledge of body fluids, their compositions and regulation mechanisms;

2) knowledge of pathophysiologies, classification of primary disease etiologies
and temporal courses of disease progression;

3) knowledge of diseases and syndromes organized hierarchically based on their
anatomical site of involvement, their pathophysiology, their primary etiology
and temporal patterns; and

4) associations between diseases and their clinical symptoms and causal
relations between different diseases, expressed at multiple levels of explicit
detail.

We will illustrate the organization of medical knowledge in the knowledge base with
the help of a few selected examples. The first (Figure 2-3) shows a partial hierarchy of
the anatomical parts of the kidney. It shows, for example, that the nephron is a part of
the kidney, that the tubule is a part of the nephron and that the proximal-tubule is a
part of the tubule. The anatomical entities organized in such a hierarchy are then used
as anchor points for describing additional anatomical relations, as illustrated in Figure
2-4, which shows the pathway of renal filtrate as it moves from the nephron to the
collecting duct. This information is itself organized hierarchically at varying levels of

15

CLINICAL DECISION MAKING

detail. This ability to express and reason with medical knowledge at varying levels of
detail is a key to high performance AIM systems, which must contain large volumes of
basic medical knowledge and yet perform efficiently at the clinical level. This can only
be achieved if the knowledge base is organized in the above fashion, allowing the
programs to bypass the detailed knowledge in all but those areas where such detail is
relevant to the case at hand.

UuIWARYTSTM

HIPHRONC0LLEfCTIN-
DucT

Figure 2-3: An Anatomical Taxonomy for Parts of the Kidney

Diseases can be organized in a hierarchy based on a number of different organizing
themes. One organizing principle used commonly is based on the organ system involved
in a disease. Thus a disease could be classified as being "renal disease" which could be
further divided into diseases of the nephron, interstitium, etc. Another common
organizing principle is based on the primary etiology of disease. Thus diseases are often
classified as being infectious or degenerative, and the infectious diseases can be further
subclassified as being viral, bacterial, etc. In our present work, we are exploring the use
of a number of these dimensions simultaneously in organizing a heterarchy of diseases.
Figure 2-5 shows a small fragment of such a disease taxonomy. Renal disease is defined
to be a disease whose site of involvement is the urinary system. Next, interstitial-renal-

.. 16

CLINICAL DECISION MAKING

*~~~C NCCUVOO~lTSIL

GLOMERULE -OF 3I7%

-PROXIOL MNALIS1ATUD

TU ULE -TP'U

IDISTAL UBULI.

Fgr -e a n tvlL

spcaiaionr of4 r h ahwyo enal diesebcastte ratersttume isral partl of teidny

which is a part of the urinary-system. Similarly, we define infectious disease to be a
disease whose etiology is infectious. Next, when infectious-renal-disease is defined to be
a specialization of infectious disease and renal disease, it automatically inherits its
anatomical site of involvement as being the urinary-system and its etiology as being

" infectious. Finally, when we enter an infectious renal interstitial disease such as
• . pyelonephritis, it is correctly placed into the hierarchy, as shown. Returning to the

example of infectious-renal-disease, we note that by its placement in the heterarchy, we
are able to identify diseases more general or more specific to it along any of the
represented dimensions. We believe that such an organization will allow us to develop
powerful reasoning strategies for effectively aggregating and refining disease hypotheses.
It should also help to focus on a small number of aspects of a disease and thus to aid
the formulation of small and effective differentiation problems for diagnostic inquiry.

Plans for 1g85-86: We plan to continue to investigate the applicability of

17

CLINICAL DECISION MAKING

ilki u-ndg I

Figure 2-5: Fragment of a Heterarchic Organization of Diseases

knowledge-representation methods, such as those employed in NIKL, to represent
detailed medical knowledge. Our plan for the coming year is to broaden the initial
steps described here to represent more of the knowledge of the ABEL program in a
principled manner. In addition, we have begun conversations with other researchers in
the Laboratory for Computer Science who are interested in the deveLopment and

application of parallel computing techniques, and this is likely to lead to a study of the
use of a NIKglike language on a parallel computer. If this occurs, we would expect to
use the knowledge base being experimentally constructed in this project to serve as a
study case for that other project.

4.2. Problem-Solving Systems for Molecular Genetics

As we have stressed, the ability of a system to explain its knowledge and conclusions is
strongly influenced by the degree of cleanliness with which its knowledge is internally
expressed. We have conducted a study that gives support to this view in comparing
two versions of a program whose task is to explain a set of data about the expressio of

18

us of a NILlk lagug onaprle optr ftisocrw olxett

CLINICAL DECISION IIAKING

a genetic mechanism. Both programs contain knowledge about how to determine the
malfunctions of the basic mechanism of transcription and translation, according to the
operon theory of procaryotic genetics.

The first program, GENEX I, used a procedural encoding of how to trace down
malfunction, essentially implementing a large flowchart. Even with this relatively
implicit approach, it was able to answer correctly the relevant examination questions
from an undergraduate MIT genetics course. A sample of its operation on a problem
from that examination is given below, with the problem statement in bold face and
comments interspersed in italics.

The enzyme uncine synthetase (USase) of the hypothetical bacterium
Altacoccus profundii synthesizes the essential amino acid uncine. When no
uncine is present in the growth medium USase is made at a high level,
allowing cells to grow. When uncine is added to the medium, however, very
little USase is made (the cells use the added uncine to grow).

This information can be represented to the program as follows. Let the
operon be called unc. The gene coding for USase is labeled unc-gene.

unc
(UNC-GENE USASE)

This is what we the program has been told about USase:

(plist 'usase)
(PURPOSE SYNTHESIS END-PRODUCT UNCINE INV-PROPORTIONAL-TO

(UNCINE))

things-present is a list of the substances present in the medium at the
time of interest. The substances besides uncine are acting as red herrings.

things-present
(LACTOSE TRYP UNCINE ARABINOSE)

(initialize unc)
is UNC-GENE product made? NO

The gene product, USase, is not made in the presence of uncine.

is there a mutation in UNC-GENE? (yes, no, unknown) NO
is there an unlinked mutation? (yes, no, unknown) NO
was diploid constructed? NO
DONE

The program now has all the information stated in the above paragraph.
Outline briefly, at the molecular level, two simple but different models that

would explain why very little USase is made in the presence of uncine. In
each, be sure to indicate the role of uncine.

CLINICAL DECISION MAKING

(genex unc)
assuming no misfunction at UNC- ENE promoter
is UNC-GENE a regulatory gene? NO
assuming UNC-GENE can be repressed
assuming UNC-GENE repressor is repressible
assuming UNCINE is corepressor for UNC-GENE--

UNC-GENE is inactive in presence of UNCINE

GENEX I has found one model for the behavior of the unc operon--that it is
negatively controlled and corepressed by uncine. It used a rule which states
that genes which code for biosynthetic pathways are repressible by their
end-products.

assuming no misfunction at UNC-GENE operator
checking positive control of UNC-GENE
assuming UNCINE Is corepressor for UNC-GENE--

UNC-GENE is inactive in presence of UNCINE
done checking positive control of UNC-GENE

A second model has been found, that unc is positively controlled and the
activator is inactivated by the presence of the co-repressor, uncine.

message possibly attenuated due to presence of UNCINE
NIL

In fact, GENEX I has found a third model for the behavior of unc, that
uncine acts as an attenuator on the transcription of the ,ac genes. It used
a rule which states that genes which code for the synth, ais of amino acids
can be attenuated.

In contrast to the procedural representation of GENEX I, the successor program, GENEX
II, contains explicit representations of the following concepts: operon, promoter,
operator, terminator, binding-site, regulatory-site, gene, structural-gene, regulatory-
gene, nucleotide, nucleotide-sequence, codon, DNA, RNA, amino-acid, amino-acid-
sequence, protein, structural-protein, regulatory-protein, sugar, repressor, activator,
inducer, corepressor, enzyme, and polymerase. Its representations of fundamental
operations of molecular genetics are in terms of small operation models expressed in
Prolog, such as the following model of the BIND operation:

bind(Mol, Site) :- binding-site(Mol, Site),
complementary-conform (Mol, Site),
\+ bound(X,Site),
free-to-bind (Mol),
assert (bound (Mol, Site)).

The representation of the lac operon is given in Figure 2-6.

20

CLINICAL DECISION MAKING

operon (lac-operon).

part-of (lac-operon, lac-operon-promoter).
promoter (lac-operon-promoter).

part-of(lac-operon, lac-operon-operator).
operator (lac-operon-operator).

part-of (lac-operon, lac-operon-reg-gene).
reg-gene (lac-operon-reg-gene).

part-of (lac-operon, b-galactosidase-gene).
struct-gene~lac-operon, b-galactosidase-gene).

part-of (lac-operon, b-galactoside-permease-gene).
struct-gene(lac-operon, b-galactoside-permease-gene).

part-of(lac-operon, b-galactoside-transacetylase-gene).
struct-gene~lac-operon, b-galactoside-transacetylase-gene).

part-of (P,overlap-region(P.O)) :-promoter(P) ,operator(O).
part-of (0, overlap-region (P, 0)) -operator (0) ,proCr).
next-to(lac-operon-promoter,b-galactosidase-gene).
next-to (b-galactosidase-gene ,b-galactoside-permease-gene).
next-to (b-galactoside-permease-gene,

b-galactoside-transacetylase-gene).

product Cb-galactosidase-gene, b-galactosidase).
enzyme (b-galactosidase).
substrate(b-galactosidase, lactose).
purpose(b-galactosidase, catabolic-proc).

... etc

Figure 2-6: Representation of the lac operon in GENEX 11.

These representations give GENEX HI an actual model of how genetics operates. Thus,
* it is able to work through all possible interpretations of the facts at hand that are

consistent with its understanding of genetics, and therefore to identify all sets of
conditions that can account for the known facts. With such explicit representations,
GENEX II is able to deal with examples in which multiple mutations occur -- examples in
which the more rigid heuristics of GENEX I would have failed.

21

CLINICAL DECISION MAKING

Details of this project may be found in the report by Ms. Phyllis Koton, "Towards a
Problem Solving System for Molecular Genetics," MIT Laboratory for Computer
Science Technical Report TR-338, May 1085.

Future Plans: We have no current plans to continue this specific work on genetic
modeling. We have, however, begun to examine the application of the same
fundamental modeling techniques to the problems of finding commonalities among the
descriptions of different patient cases. Although this idea is not yet well-developed, our
examination of the problem-solving process employed by physicians suggests that on
occasion they use detailed recollections of specific former cases to guide their current
thinking. We plan to investigate ideas based on this observation, in the domain of
patients with heart failure.

4.3. Qualitative Mathematical Reasoning

In seeking deeper models of understanding of human health and illness, we often
develop formal models of how the interactions among parts of the body and various
disease entities generate the observable behavior of the overall system. Although the
sciences have developed powerful mathematical tools for analyzing the behaviors of
complex systems, classical approaches such as modeling with differential equations
demand a level of precision of knowledge that is often unachievable in the current state
of understanding of medicine. Nevertheless, human clinicians are able to reason about
the qualitative behavior of such systems, often relying on descriptions much weaker
than differential equations. Instead, for example, they may know simply that a rise in
one quantity invariably leads to a rise in a second, or that one measurable value is the
time integral of another (e.g., a serum drug level is the integral of infusion rate minus
excretion and metabolic breakdown) even if neither value can be precisely characterized.

Both in medical and non-medical projects in AI, various suggestions have been made
of how to achieve such reasoning within a program. Most of these have centered on the
idea that even partial descriptions of physical or physiological systems may be
symbolically simulated, to yield a trace of the expected future behavior of the system.
These approaches have been moderately successful at predicting the behavior of simple
systems (such as an electric buzzer, for example), but they fail to exploit any of the
mathematical sophistication that has accumulated over the centuries in analyzing
complex systems not by simulating them but by reasoning about the forms of the
functions that describe their behavior.

In this project, we have applied such classical mathematical analysis methods to the
sorts of qualitative (or imprecisely-specified) problems that have been the recent subject
of study in the AI qualitative simulation field. The result has been a program called the
"Qualitative Mathematical Reasoner," whose operation rests on two fundamental
insights:

1) Imprecision may often be modeled by introducing symbolic parameters in
conventional mathematical descriptions of a system; and

22

CLINICAL DECISION MAKING

2) if it is possible to find a closed-form solution to such a parameterized
system, then classical methods of analyzing the behavior of such functions
can provide definitive and useful analyses of the function's asymptotic
behavior, aperiodicity, values at interesting distinguished points, etc.

As an illustration of the power of this technique, consider the case of a damped spring,
described by the following network:

Y' J Y V
-(icv + k2a) V Y

It obeys the equation of motion

fk, > 0
y(t) = -kv(t) - k2a(t) with k2 > 0

which can be derived from the network, and this is solved to yield

!It t Ank~ =
y(t) = 2yoV 2AeC&Cos I- arctan(kA) with k213-- 2k2A

The program then produces the following description of the points of interest and the
behavior of the system in the regions between these:

23

CLINICAL DECISION MAKING

There is a unique qualitative description of Y.

Time point 1:0
Y's value is Yo
Between points 1 and 2:
Y decreases.
It accelerates between 0 and 8 larctan k1A + axctan(2k2 -

It decelerates between # jarctan k1A + arctan(2k2 - k1)A] and 7r

0 farctan k1 A + arctan(2k2 - kl)A) is an inflection point

Y goes through the significant value 0

Time point 2: 7r,3

It is significant because Y reaches a minimum.

Y's value is -- yoock A

Between points 2 and 3:
Y increases.

It decelerates between ir# and P laxctan k, A + arctan(4k2 - kl)&)

It accelerates between # [arctan k1
A + arctan(4k2- kJA)I and 21rP

0 [arctan k A + arctan(4k 2 - k)AJ is an inflection point

Y goes through the significant value 0

Time point 3: 2r1
Y's value is Yoe - 2*klA

Y repeats the qualitative behavior from 1O, 27rP)

ou 2n%0~, 2(n + l)ir3l for ni = 1 to oo.

Its magnitude decreases by a factor of e- 2wkIA on each interval.

The limit at o is 0.

This is in sharp contrast with the approach taken by programs based on simulation,

which essentially produce only a sequence of descriptions of successive time points and

region descriptions, and cannot recognize the long-term trends in the system's behavior

such as approaching an asymptote or oscillating.

This work is described in detail in the report by Ms. Elisha Sacks, "Qualitative

Mathematical Reasoning," MIT Laboratory for Computer Science Technical Report

TR-329, May 1985.

Plans for 1985-86: The methods explored in this project are only applicable when

it is possible to find a closed-form solution to the system being modeled. Unfortunately,

this is only rarely the case for nonlinear systems, and is even unusual for large linear

systems. Our attention is turning, therefore, to studying methods of deriving symbolic

approximate solutions to such systems, by the application of well-known mathematical

techniques such as series expansions, approximation by piecewise-linear functions, etc.

In this, we plan to retain the basic approach developed to date. We have also begun to

collect interesting medical models in which such analysis methods are applicable. Thus

far, a model for the regulation of calcium metabolism looks most promising, and others

in the fields of circulation and acid-base buffering are also being examined.

24

CLINICAL DECISION MAKING

4.4. Reasoning About Preference Structures

A different aspect of medical knowledge, one that plays a particularly important role
in making choices under uncertainty when there are risks involved, is to be able to
compare preferences for different possible outcomes. In classical decision analysis, this
is accomplished by using a utility function, which assigns a numerical value to each

outcome. Unfortunately, it is very difficult (if not impossible), to ask a patient, for
example, to quantify in this way his or her evaluations of all possible outcomes of a
planned series of diagnostic and therapeutic interventions. This difficulty arises from

two factors:

1) An individual may be able to state certain general preferences (e.g., living a
longer life is better than a shorter one) and general results of utility theory

suggest that nearly everyone is risk-averse, translating such qualitative
notions into precise numerical assignments introduces a level of precision

that far exceeds its accuracy;

2) Many decisions involve evaluation not just along a single scale but in terms
of multiple attributes. Thus, it may not only be length of life but also
quality of life, short-term pain, money, etc. that influence an individual's

decisions.

In an effort to get around the difficulties with classical utility assignments, we have
developed a set of programs called the "Reasoning Utility Package" (URP), that allow a

program to reason with incompletely-specified utility functions. This program provides

two important capabilities:

1) It can apply knowledge of mathematical relationships that can determine
whether certain alternatives dominate others even without a precise

knowledge of their value.

2) It includes a large body of theorems of multi-attribute utility theory and a
theorem-prover that can apply that knowledge, to analyze independence

conditions when multiple attributes are present and to suggest appropriate
forms of the multi-attribute utility function based on what is known about
the relationships among the different attributes.

The first of these has been demonstrated in analyzing a published decision problem

from the T/NEMC Division of Clinical Decision Making, showing that many possible

decisions can be eliminated even without assuming such specific utility structures as had
been employed in the original analysis. The case involves a 72 year-old male with a

large abdominal aortic aneurysm and a history of coronary artery disease and
cerebrovascular disease. The decision problem is whether to operate to repair the
aneurysm in the face of grave operative risks from the other disorders, or to repair the
other problems first, at the risk of a ruptured aneurysm.

25

CLINICAL DECISION MAKING

URP was able to show that, of the seven options for diagnostic and therapeutic
interventions considered, four could be eliminated assuming only that preference is
monotonic for life-expectancy (i.e., longer life is better). Dominance among the others
depended explicitly on the patient's risk aversion (i.e., how much long-term life
expectancy he was willing to trade for a smaller chance of immediate mortality). As
tighter assumptions were introduced, URP naturally reproduces the original analysis, but
it is able to give a more precise understanding of which assumptions about the patient's
preferences have what consequences for the analysis.

Plans for 1985-86: The intent of this work on preference modeling is to provide
more sophisticated capabilities for decision analysis programs to reason about utilities.
We plan to continue this line of research, but will not be able to incorporate its results
into a practical decision analysis tool because that portion of the project is now
terminating. However, we are currently seeking funding for a new effort to merge
techniques of decision analysis and artificial intelligence into a tool for clinical decision
making, and our work on preference modeling should be a key beginning for that effort.

5. PROGRAM FOR THE MANAGEMENT OF HEART FAILURE

5.1. Objectives

The objective of this project is to develop a methodology for assisting the physician in
reasoning about the diagnosis and management of disease, particularly when causality,
physiological relationships, and changes over time are important to the reasoning
process. The context for this research is the diagnosis and management of heart failure,
a problem which requires a thorough understanding of the hemodynamic and

physiological relationships of the cardiovascular system for effective management. The
emphasis of the first two years of the project is on developing an adequate
representation for the physiological knowledge, developing the appropriate physiological
model for the domain, and beginning to develop the algorithms for reasoning about the
diagnostic and management problems of the patient.

5.2. Progress Report

Our strategy in the past year has been to look at a representative part of the heart
failure domain to understand the pertinent reasoning processes and use that subdomain
to uncover requirements for the representation. By concentrating on a subdomain first,
it is possible to experiment with representational ideas and variations of the
physiological model to explore the advantages and limitations of alternative structures
without a large expenditure of effort. The subdomain we have focused on is the
management of angina in the patient with heart failure. This domain emphasizes the
patient management aspects of the reasoning, thus anticipating the reasoning problems
existing in heart failure cases with uncorrectable etiology.

26

CLINICAL DECISION MAI(NG

During the past year, we have constructed a physiological model containing the
important factors for the management of angina and have used it to address some of
the reasoning issues. The model consists of approximately 70 nodes representihig
physiological parameter values, primary causes, and therapies. Thirty nodes represent
physiological parameter values, including excess myocardial oxygen
consumption, pulmonary venous congestion, and inadequate coronary
flow. Twenty nodes, designated primary, represent states whose causes are outside of
the model, such as coronary artery disease, anemia, and fever. The remaining
20 nodes represent factors that can be controlled by the physician, including therapy for
the angina or heart failure, therapies that interact with the angina management, such as
broncodilators, and maneuvers to correct some of the primary states, such as aortic
valve surgery to correct stenosis. The nodes were chosen to include those factors that
should be considered in the management of patients.

First versions of the input module, diagnostic module, and therapy module were built
around the angina model to provide a functioning test environment. The program and
the problem domain have been useful in understanding and investigating a number of
problems including the classification of causality, setting node values from input data,
assessing the completeness of a diagnosis, finding data to refine a diagnosis, finding
possible therapies, and determining possible outcomes of therapy.

By addressing a domain where most of the primary causes are uncorrectable, it
became clear that some of the most important information about the state of the
patient is the existence of treatable conditions that worsen the problem even though
they may not cause it. To facilitate reasoning about such conditions, we enhanced the
causal representation to include five types of relationships between cause and effect:
definite causes, possible causes, worsening factors, possible corrections, and definite
corrections. The worsening factors are those conditions that can precipitate or worsen a
problem, but are insufficient in themselves account for the problem. For example, a
patient with coronary artery disease may experience angina when a fever increases the
demand on the heart.

The input data must be interpreted to assign appropriate node values before reasoning
can take place. We made an initial pass at this problem by providing a system that
allows the user to enter data in a paragraph style, add more data as desired, or change
information already entered. A typical example of input, entered by completing
phrases, is as follows:

The patient data is as follows:

The patient history includes coronary artery disease. The
patient exhibits angina. The patient is experiencing
fatigue and shortness of breath. The patient is treated
with nothing.

The input data is mapped to the nodes for which the data provides evidence. Each

27

CLINICAL DECISION MAKING

node for which there is new evidence is evaluated according to simple rules that assign a
number from -1 to 1 to the evidence. From this range thresholds are used to determine
those nodes with sufficient evidence to assert truth or falsity, those that are unknown,
and those for which there is some evidence but the user should decide whether it is
sufficient. The mechanism of asking the user about less strong evidence brings the user
into the reasoning at a place where familiarity with the patient may be very useful, as
well as allowing the reasoning mechanisms to be built incrementally.

With the ability to incrementally change the input, the system proved useful for
exploring diagnosis refinement. From the reasoning in angina management, it became
clear that identifying the correctable conditions contributing to the patient's problem is
essential to the diagnosis. With a patient suffering from coronary artery disease, the
ultimate cause of angina is clear but, if there is a rapid heart rate and high metabolic
demand from a fever, treating the fever is likely to provide some relief from the angina.
The model representation is proving effective for finding those conditions that might be
worsening the situation that have not yet been considered. The program can examine
the current state of the diagnosis and identify the possible causes and worsening factors
that remain unknown. It can then use the evidence mappings to suggest further
information that would clarify the diagnosis. For example, in the angina patient it
would suggest information to assess any increase in cardiac demand, such as
temperature, use of broncodilator therapy, existence of hyperthyroidism, and so forth.

The angina model has also been useful for understanding the reasoning process in
selecting therapy. The links to possible and definite corrections provide the connections
from the diagnosis to the therapies that might treat the problem. Thus, finding
candidate therapies requires examining the diagnostic nodes for such links. There is no
guarantee that the therapy is appropriate since there may be effects besides the desired
effect. Determining the possible effects of the therapy is a process of examining the
paths forward from the therapy to see what changes might result. We have written
simple algorithms for doing this in the angina domain. The results have been
encouraging, indicating that there is much useful information to be had from simple
strategies. However, it is also clear that the relative strengths of relations as well as the
overall effects of the several feedback loops are important for pruning the possible
effects.

The angina model has proved an effective base for exploring these issues and has led
to a number of ideas for enhancements to the representation which we will be trying in
the coming months. The exploration also resulted in a paper presented at a Computers
in Cardiology conference. [3].

5.3. Objectives

Our research plan for the coming year is to explore strategies for overcoming some of
the inadequacies in the representation identified over the past year, extending the
experimental angina model to cover aspects of the heart failure problem that have other
kinds of reasoning requirements, and use actual cases to critique our algorithms.

28

CLINICAL DECISION MAKING

The representational inadequacies that we plan to address include the following:

1) At present there is not a one-to-one correspondence between nodes in the
model and possible findings from the input. Some findings might be
produced by more than one node. As a result, the reasoning needed to use
the findings as evidence for nodes has many of the same features as the
reasoning within the model. Thus, we will be experimenting with strategies
for doing much of the evidence reasoning within the physiological model.
The evidence reasoning that will remain outside the model will be that
relating to measurement errors, such as variation in experience levels and
physical conditions that change the reliability of the measurements.

2) The possible and definite distinction for causes is sufficient to drive
the logic substrate of the program but is insufficient to order the diagnostic
reasoning tasks. To allow the program to focus attention on the most likely
causes and explanations for the findings, we will add a coarse probability
measure to the causal relationships. This information should also prove
useful for deciding when the diagnosis is sufficiently complete to allow
reasoning about the possible therapies.

3) The issues of feedback and relative changes, for reasoning about the possible
effects of therapy and the meaning of observed effects, will be addressed in
the coming months. From our understanding of the problem so far, it
appears that including very coarse strength relations between cause and
effect in the representation will be sufficient to approximate the information
in relationships such as the Frank-Starling curves. In addition, it appears
advantageous to explicitly identify the feedback loops and characterize their
overall behavior under known conditions. We will determine whether this
additional information is sufficient to drive algorithms to give the user the
desired reasoning behavior.

4) The issues of time of causation were partially addressed earlier in the
project, but need to be further developed and incorporated into the same
reprgsentational framework.

5) Finally, we plan to look at the issue of reasoning about the changes that
take place between sessions. This is a problem of obvious importance that
depends on a solid foundation of diagnostic and therapeutic reasoning, but
we should have a sufficient foundation to begin this investigation during the
next year.

The angina model covers many of the issues of importance in the heart failure
domain, but there is little in it that requires reasoning about a significant delay between
cause and effect. To provide a fruitful environment for incorporating the work on
reasoning about causation in time, we will be extending the model to include the

29

CLINICAL DECISION MAKING

reasoning about kidney function and fluid retention. It may also be useful to extend
the model to cover one of the valvular diseases causing heart failure to test the
interaction between reasoning strategies used by physicians for different problems.

Finally, we will be using data from cases to critique the reasoning possible from the
model. The cases will be used to generate a testbed for comparing versions of the
program. The abstraction of case data as well as work on the model extensions will be
done by research fellow Dr. Steve Kurzrok, a fully trained cardiologist who joined the
project in October.

6. TOOLS FOR CLINICAL DECISION ANALYSIS

This project was carried out mostly at T/NEMC by Drs. Pauker, and Moskowitz, and
their associates. Some five years ago we first proposed to extend a decision tree analysis
package, developed on the Apple II computer, for dissemination and to monitor its use
and application. When that proposal was funded the evaluation and dissemination
portions of the project were largely eliminated and we were funded only for
development to the stage that dissemination could be supported. We have proceeded
along that path, experimenting with a variety of developmental environments before
settling on our current product. Although we have not been able to monitor program
use at the some 100 sites to whom we have disseminated, the developing products have
been extensively used in our own units and we have expanded the products as dictated
by their extensive applications there. The programs are used on some 10 IBM PC
computers in our units and we estimate that they see, on average, 100 man-hours of use
each week.

6.1. Systems Configurations

The original program was developed on the Apple II computer, using a 6502 chip. It
required the language card, extending the machine to 64K and providing the Apple
version of the UCSD Pascal operating system. It was next extended to the Apple III
computer, a now defunct machine which was relatively upwards compatible with the
Apple II and which was designed around the UCSD Operating System as its kernel. The
lack of commercial success of the Apple III (and hence a lack of users -- we distributed
only two Apple III versions of our program to the medical community) led us to
consider other processors. We developed versions for the Z80 processor on the
Heath/Zenith Z-89 computer. That program was inherently slower than its 6502
counterpart and was severely limited by the 64K memory limit of that family of
computers. We explored the use of other Pascal compilers, particularly ones that could
produce object code, rather than the interpreted P-code used by the UCSD P-system,
hoping to gain additional speed. We extensively explored the Pascal MT+ compiler, but
eventually were forced to abandon that attempt because the object code version of the
program took so much of the 64K RAM that realistic decision trees could not be
created.

30

CLINICAL DECISION MAKING

We eventually shifted to the IBM PC because sufficient market share and program
availability made that machine a viable alternative. Our initial development in that
environment was limited to the UCSD P-system because of its compatibility with our
prior program and because of its support of the overlay structure necessary for a
program of this size and complexity. (The IBM Pascal compiler and the Microsoft
Pascal compiler did not, and we believe still do not, support overlay segments in a
manner needed by our program). We have recently been using a far better compiler,
the Turbo Pascal system, which has become the de facto industry standard. This
compiler supports overlays and produces very fast object code. Furthermore, the object
code can be used under the standard MS-DOS and PC-DOS operating systems, so users are
no longer required to purchase the UCSD Pascal P-System to use our programs.

We have also explored another MS-DOS version written in the IQLISP programming
environment. Unfortunately that system requires the purchase of IQLISP. That
program is not as fast as the Turbo Pascal versions, but is able to perform common
expression analysis. It also can produce BASIC statements which can then be passed to
the IBM BASIC compiler to produce very fast object code which represents a particular
decision tree. That program is not suitable for tree development and debugging,
because the edit/compiler/basic-compiler/run cycle is very cumbersome. However, once
an application has been developed, the code produced by that system allows very rapid
sensitivity analyses.

6.2. Extensions to Decision Analysis

The central way that our system differs from previous decision tree systems is the use
of sub-trees. Prior to the development of this approach, decision trees were required to
be entered in extensive form, with similar portions of the tree being entered many
times. In our system, such similar regions are entered only once and other occurrences
are simply linked to that subtree with the specification of appropriate parameters (i.e.,
arguments) and with the subtree returning an appropriate expected value which is then
passed further up the tree. The mechanism we established for passing arguments is a
binding stack, which is a push down stack that allows multiple copies of the same
variable but access only to the last or top copy. The binding stack is linked to tree
evaluation, so that pointers in the decision tree place marks in the binding stack. As
the tree is folded back, when a pointer is reached, the binding stack is popped,
returning the context of evaluation (the set of variable bindings) to a prior value. The
mechanism essentially provides local variables in the same manner as early LISP
implementations.

One of the major time constraints we found in tree evaluation is the necessity to fold
a tree back many times with different utility structures. The most common situation in
which this occurs is when the analyst is performing a cost effectiveness analysis: in that
case, the two utilities are typically dollar or resource cost and effectiveness -- typically
quality adjusted life expectancy. We have found numerous other problems, however, in

31

CLINICAL DECISION MAKING

which dual utility structures are needed, e.g., calculating abortions induced per
malformed child avoided, complications per year of vision saved, etc. The problems
with folding the decision tree back separately for each utility are several: If there are
any embedded decision nodes, then the analyst must be able to ensure that those
embedded switches flip the same way for each fold back. In general, that will not be
true because the maximization criterion at any node will depend on the utility used.
Furthermore, most of the effort required in the foldback is duplicated because the
calculation of probabilities, bindings and the creation of tree structure is shared. This
led us to create a DUAL utility mechanism, whereby two separate utility structures are
calculated and maintained, if desired, in each foldback. In term of calculation time,
this mechanism performs dual foldbacks in 60%-70% of the time required for two
separate analyses. We also provide the automatic calculation of average and marginal
cost-effectiveness ratios for those situations when the two utilities are, in fact, cost and
effectiveness.

The next major extension of decision analysis was the creation of the boolean node --
a new node type beyond the traditional three (decision, chance, and terminal). The
boolean node is a logical switch which is controlled by the truth status of a variable or
an expression. This extension allows the structure of a decision tree to be modified
during evaluation, allowing a far more powerful set of processes to be modeled. One
obvious use of this mechanism is to allow the modeling of recursive processes, with a
control variable or flag being incremented or set to limit the depth of recursion. We use
this mechanism to deal with problems involving the order of testing or therapy or if an
alternative therapy is available after primary therapy has failed. Boolean nodes also
allow the representation of time with a control variable being incremented with each
pass through the decision tree. This approach has allowed us to model both Markov
and semi-Markov processes and to make hypersimplified decision trees.

A major advance occurred with the implementation of Markov processes using a tree-
like presentations which we called Markov cycle trees. This notation used chance nodes
to model pathways within a Markov process and used terminal nodes as collectors for
states. Control of the Markov process (i.e., when it terminates) is provided by
alternative criteria -- the lack of gain of incremental utility, a maximum number of
cycles, or some combination of these criteria. The program has automatic half cycle
corrections for the first and last cycles and allows the tail expression to be the name of
a tree so that Markov processes can be patched into an ordinary decision tree. Of
course, dual utilities are supported so that Markov cost-effectiveness analyses can be
performed.

6.3. Alternative versions

In addition to the basic machine independent Turbo version (DECISION MAKER), a
second version has been developed and tested (SMALLTREE) which provides a great deal
more screen support and graphic tree entry and editing facilities. That program was

32

CLINICAL DECISION MAKING

also developed in Turbo Pascal but requires more specific hardware. Both of these
versions now partially pre-compile expressions and use address pointers into the binding
stack (rather than variable name lookup). These techniques, along with the shift from
the interpreted P-system, have produced a 20 to 50 fold increase in execution speed. At
this point all use of the SMALLTREE system has been within our own unit; all beta sites
have been using the DECISION MAKER system.

This group has also developed a more cumbersome decision package that uses the
IQLISP system on the IBM PC. It can compile specific decision trees into basic code
which is that compiled by the IBM basic compiler into very fast, but inflexible, object
code. The development of that system was necessitated by the relatively slow UCSD
Pascal interpreted version of DECISION MAKER which was not well suited for repetitive
extensive sensitivity analyses. With the development of the two Turbo versions, the
IQLISP program has seen far less use in this group.

6.4. Dissemination

The program is now available as object code running under MS-DOS/PC-DOS for the
IBM PC. We have distributed copies to some 100 colleagues at other institutions.
Although we have not made any formal evaluation of use, we find three basic levels of
success: For naive users who have never constructed decision trees nor received formal
training in clinical decision analysis, we have found few successful users, although many
continue to dabble with the program. For settings in which physicians and decision
analysts are routinely performing analyses, we believe our program is being used
extensively, although some of these experienced analysts have some minor disagreements
with our style of analysis. A third class of users is constituted by physicians who have
spent time in our unit, from one day to many months. These individuals use the
program far more extensively and are, in general, happier with its style.

We have developed a library of sample analyses, that have been tested by many
visitors to our institution. We have also developed written and on-line manuals for
several versions of our program. There is also a limited amount of on-line help screens
available.

We plan to continue to expand and modify these programs as the need dictates.

33

CLINICAL DECISION MAKING

References

1. Kassirer J. P. "Teaching Clinical Medicine by Iterative Hypothesis Testing.
Let's Preach What We Practice," New England Journal of Medicine, 309
(1983), 921.

2. Kuipers, B., Moskowitz, A. and Kassirer, J.P. "The Critical Decision Node,"
to appear.

3. Long, W.J., Naimi, S., Criscitiello, M.G., Pauker, S.G. and Szolovits, P. "An
Aid to Physiological Reasoning in the Management of Cardiovascular
Disease," Proceedings of IEEE Computers in Cardiology Conference, Salt
Lake City, UT, September 18-21, 1984, 3-6.

4. Moskowitz, A.J., Kassirer, J.P. and Kuipers, B.J. "Clinical Reasoning versus
Decision Analysis," abstract of discussion presented at Sixth Annual Meeting
of the Society of Medical Decision Making, National Institutes of Health,
Bethesda, MD, November 1984, to appear in Medical Decision Making, 43,
(1985).

5. National Heart, Lung and Blood Institute (NHLBI). "Artificial Heart and
Assist Devices: Directions, Needs, Costs, Societal and Ethical Issues," Report
of the Working Group on Mechanical Circulatory Support of NHLBI, to
appear.

Publications

1. Beck, J.R., Letarte, A.L. and Pauker, S.G. "Clinical Decision Analysis Using
Decision Maker," 85-03, Department of Pathology, Dartmouth Medical
School, Hanover, NH, 1985. To appear in Proceedings of 1985 Symposium
on Computer Applications in Medical Care.

2. Granville, R.A. "Controlling Lexical Substitution in Computer Text
Generation", Proceedings of the 10th International Conference on
Computational Linguistics and 22nd Annual Meeting of the Association
for Computational Linguistics (COLING-84), Stanford University,
Stanford, CA, July 2-6, 1984, 381-384.

3. Hollenberg, J.P. "Markov Cycle Trees: A New Representation for Complex
Markov Processes," abstract of a discussion presented at The Sixth Annual
Meeting of the Society for Medical Decision Making, National Institutes of
Health, Bethesda, MD, November 1984. To appear in Medical Decision
Making.

4. Hollenberg, J.P. "The Decision Tree Builder: An Expert System to Simulate

34

CLINICAL DECISION MAKING

Medical Prognosis and Management," abstract of a discussion presented at
The Sixth Annual Meeting of the Society for Medical Decision Making,
National Institutes of Health, Bethesda, MD, November 1984. To appear in
Medical Decision Making.

5. Koton, P. "Towards a Problem Solving System for Molecular Genetics,"
MIT/LCS/TR-338, MIT Laboratory for Computer Science, Cambridge, MA,
May 1085.

6. Kuipers, B. "Qualitative Simulation of Mechanisms." MIT/LCS/TM-274,
MIT Laboratory for Computer Science, Cambridge, MA, Apfil 1985.

7. Kuipers, B. "Commonsense Reasoning About Causality: Deriving Behavior
From Structure," Artificial Intelligence, 24 (1984), 169-203. Reprinted in
Qualitative Reasoning about Physical Systems, Bobrow, D. G. (Ed.), North-
Holland Press, New York, 1984. Paperback publication by MIT Press,
Cambridge, MA, 1985.

8. Kuipers, B. and Kassirer, J.P. "Causal Reasoning in Medicine: Analysis of
a Protocol," Cognitive Science, 8 (1984), 363-385.

9. Kuipers, B. "The Cognitive Map Overlaps the Environmental Frame, the
Situation, and the Real-World Formulary." Commentary on an article by
Feldman. To appear in The Behavioral and Brain Sciences, 8,2 (June
1985).

10. Kuipers, B. "Is the Theory a Competence Theory or a Performance
Theory?" Commentary on an article by Nashner and McCollum. The
Behavioral and Brain Sciences, 8, 1 (March 1985).

11. Lau, J., Levey, A.S., Kassirer, J.P. and Pauker, S.G. "Using a Semi-Markov
Process to Estimate Prognosis of Patients with End-Stage Renal Disease,"
abstract of a discussion presented at The Sixth Annual Meeting of the
Society for Medical Decision Making, National Institutes of Health,
Bethesda, MD, November 1984. To appear in Medical Decision Making.

12. Long, W.J., Naimi, S., Criscitiello, M.G., Pauker, S.G. and Szolovits, P. "An
Aid to Physiological Reasoning in the Management of Cardiovascular
Disease," Proceedings of IEEE Computers in Cardiology Conference, Salt
Lake City, UT, September 18-21, 1984, 3-6.

13. Moskowitz, A.J., Dunn, V.H., Lau, J. and Pauker, S.G. "Can
'Hypersimplified' Decision Trees be Used Instead of Markov Models?"
abstract of a discussion presented at The Sixth Annual Meeting of the

35

CLINICAL DECISION MAKING

Society for Medical Decision Making, National Institutes of Health,
Bethesda, MD, November 1984. To appear in Medical Decision Making.

14. Moskowitz, A.J., Kassirer, J.P., and Kuipers, B.J. "Clinical Reasoning versus
Decision Analysis," abstract of discussion presented at Sixth Annual Meeting
of the Society of Medical Decision Making, National Institutes of Health,
Bethesda, MD, November 1984. To appear in Medical Decision Making,
4:3, (1985).

15. Patil, R.S. "Is Artificial Intelligence Just Another Pretty Face? An
Explanation of the Technology," Proceedings of the NEHA/AHA First
Annual Conference on Hospital Information Systems, Boston, MA, March
1984.

16. Patil, R. S., Szolovits, P. and Schwartz, W.B. "Causal Understanding of
Patient Illness in Medical Diagnosis," in Readings in Medical Artificial
Intelligence, Clancey, W. J. and Shortliffe, E. H. (Eds.), Addison Wesley,
Reading, MA, 1984, 339-360.

17. Sacks, E. "Qualitative Mathematical Reasoning," MIT/LCS/TR-329, MIT
Laboratory for Computer Science, Cambridge, MA, May 1985.

18. Szolovits, P. and Pauker, S.G. "Categorical and Probalistic Reasoning in
Medical Diagnosis," Readings in Medical Artificial Intelligence, Clancey,
W. J. and Shortliffe, E. H. (Eds.), Addison Wesley, Reading, MA, 1984,
210-240.

19. Wellman, M. "Bayesian Revision Using Probability Distributions" abstract
presented at the Sixth Annual Meeting of the Society for Medical Decision
Making, National Institutes of Health, Bethesda, MD, November 1984.

20. Wellman, M. "Reasoning About Preference Models," MIT/LCS/TR-340,
MIT Laboratory for Computer Science, Cambridge, MA, May 1985.

Theses Completed

1. Sacks, E. "Qualitative Mathematical Reasoning," S.M. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge,
MA, November 1984.

2. Wellman, M. "Reasoning About Preference Models," S.M. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge,
MA, May 1985.

36

CLINICAL DECISION MAKING

Talks

1. Kuipers, B. "Causal Reasoning and Explanation," 1985 Annual Meeting of
the American Educational Research Association, Chicago, IL, March 1985.

2. Kuipers, B. (Panel member.) "Expert Causal Reasoning and Explanation,"
presented as part of a symposium entitled "Expert Systems and Cognitive
Psychology: Implications for Medicine," American Educational Research
Association Annual Meeting, Chicago, IL, March 1985.

3. Kuipers, B., Long, W., and Patil, R. (Panel members.) "Deep Models,
Qualitative Reasoning, Compiling From Deep Models, Anatomical and
Physiological Reasoning," Artificial Intelligence in Medicine Workshop,
Ohio State University, Colombus, OH, July 1984.

4. Kuipers, B. (Panel member.) "Cognitive Psychology and AIM," Artificial
Intelligence in Medicine Workshop, Ohio State University, Colombus, OH,
July 1984.

5. Kuipers, B. "Qualitative Causal Reasoning in Diagnosis,"

Revolving Seminar, MIT Artificial Intelligence Laboratory,
Cambridge, MA, May 1085;
Microelectronics and Computer Technology Corporation, Austin,

TX, April 1985.

6. Kuipers, B. "Causal Reasoning and Qualitative Simulation," Artificial
Intelligence Symposium, Department of Computer Science, Columbia
University, New York, NY, April 1985.

7. Kuipers, B. "Qualitative Simulation of Mechanisms," Computer Science
Colloquium, University of Texas, Austin, TX, September 1984.

8. Long, W. "Modeling of Heart Failure," Artificial Intelligence in Medicine
Workshop, Ohio State University, Colombus, OH, July 1984.

9. Long, W. Panel member. "Diagnostic Reasoning Strategies," Artificial
Intelligence in Medicine Workshop, Ohio State University, Colombus, OH,
July 1984.

10. Long, W. "Artificial Intelligence Techniques Applied to the Cardiovascular
System," Devices and Technology Branch Contractors Meeting for Division
of Heart and Vascular Diseases, National Heart, Lung, and Blood
Institute, Rockville, MD, December 1984.

37

CLINICAL DECISION MAKING

11. Patil, R. (Panel member.) "Computing Environments for AIM
Research/End User," Artificial Intelligence in Medicine Workshop, Ohio
State University, Colombus, OH, July 1985.

12. Patil, R. "An Explanation of Expert System Technology and It's
Potentials," Greater Boston Chapter of Data Processing Management
Association, Boston, MA, November 1984.

13. Patil, R. "How ABEL really works," seminar at Heuristic Programming
Project, Stanford University, Stanford, CA, January 1985.

14. Patil, R. "Combining the Use of Experiential and Fundamental Knowledge
through Multi-Level Reasoning," seminar at USC/ISI, Los Angeles, CA,
January 1985.

15. Patil, R. "Deep and Shallow Reasoning in Patient Management," Clinical
Decision Making Colloquium, Tufts-New England Medical Center, Boston,
MA, January 1985.

16. Russ, T. "The Arrhythmia Advisor," Medical Systems Division of Hewlett-
Packard, Waltham, MA, October 1984.

17. Russ, T. "The Time Dependent Control Structure," Speech Processing
Group at Bell Labs, Murray Hill, NJ, November 1984.

18. Szolovits, P. "Types of Knowledge for Reasoning in Medical Al Programs,"
National Conference on Medical Informatics, Marseilles, France, December
1984.

19. Szolovits, P. "Overview of US Medical Al Research Approaches," National
Conference on Medical Informatics, Marseilles, France, December 1984.

20. Szolovits, P. "Knowledge in Medical Expert Systems," Islamorada Workshop
on Knowledge Base Management Systems, Islamorada, FL, February 1985.

21. Szolovits, P. "Artificial Intelligence Methods for Medical Decision Making,"
Harvard Medical School, Cambridge, MA, April 1985.

22. Wellman, M. "Preference Models for Decision Making Programs," Air Force
Institute of Technology, Dayton, OH, October 1984.

38

COMPUTATION STRUCTURES

Academic Staff

J. B. Dennis, Group Leader

Research Staff

W. B. Ackerman G. A. Boughton
W. Y-P. Lim

Graduate Students

T-A. Chu S. Markowitz
G-R. Gao K. Theobald
B. Guharoy E. Waldin III
S. Jagannathan T. Wanuga
B. Kuszmaul

Undergraduate Students

C. Goldman B-H. Lim
E. Gornish E. Lyons
W. Hamdy D. Marcovitz
D. Kravitz

Support Staff

N. Tarbet

Visitor

J. E. Stoy

COMPUTATION STRUCTURES

1. INTRODUCTION

The Computation Structures Group is involved in two projects concerned with the
design of computer systems using concepts of dataflow program execution and
functional programming languages. In our work on static dataflow architecture, the goal

is machines capable of high performance, low cost, and improved programmability in

the number crunching domain. In the VIM project, the objective is to build an

experimental computer system that demonstrates the merit of these ideas for general
purpose information processing by a user community.

2. STATIC DATAFLOW ARCHITECTURE

The group's effort on static dataflow architecture has been devoted to developing the
design of a practical machine for high performance scientific applications. With the
availability of commercial, pipelined floating point chips for 64-bit addition and
multiplication, we envision a dataflow processing element capable of performing 10
million floating point operations per second. A dataflow multiprocessor utilizing these
elements could comprise 64 processing elements yielding a total peak performance of 640
megaflops. Each processing element would include a large memory for holding array
values generated during computation, and would be interconnected with other
processing elements by a packet routing network.

3. PROCESSING ELEMENT DESIGN

The major work done in the past year has been the evolution of our architecture for a
dataflow processing element into an efficient and practical scheme. The participants
include graduate students T.-A. Chu, G.-R. Gao, T. Hegg, W. Lim, K. Theobald,
T. Wanuga, staff members W. A. Ackerman, G. A. Boughton and W. Lim, and several
undergraduates.

An important change has been a revision of the program execution model for a static
dataflow processor. The new model, called "argument fetching," is logically equivalent
to the old "token flow" model, but achieves better utilization of memory cycles and
space, especially when used with presently available high performance floating point
processing chips. In the token flow model, an instruction sent each of its successor
instructions a message containing the result. In the argument fetch model, the messages
only give an indication to the successor instructions that they should fire. The messages
do not contain the result. The successor instructions fetch the result from
predetermined locations in a random access memory. This model permits greater
separation of the data paths from the instruction control mechanism and allows tighter
coupling of arithmetic processors to the memory.

Our current vision of the processing element is shown in Figure 3-1. It is composed of
memories, arithmetic units, a Signal System, and an instruction execution control box.
While many components of the processing element correspond to components of a

40

COMPUTATION STRUCTURES

instruction

lllcmlOry

olicrand arlry 10 / &

mlncory 1CIolrY l)dcket port J 4 - • I

execution signalswitch co.io Iyte
' ,-'control

loating point fixed point

arith, units ar-ith, uniL

Figure 3-1: Structure of a Dataflow Processing Element.

conventional processor, the Signal System is new. This system handles the bookkeeping
required to determine when all operands for a dataflow instruction are available and the
instruction is ready for execution.

We have studied possible designs for each of the major components, keeping in mind
the approaches that might be used for their fabrication -- gate arrays, standard cell, full
custom VLSI, and commercially available chips.

The set of arithmetic processors will include commercially available chips. This is
especially attractive due to the availability of pipelined adders and multipliers using the
IEEE floating point standard that offer as much as 10 megaflops of performance. For
the fixed point units, commercial units may be used, but it is is not certain that these
fit well into our design, thus specialized implementations may be required.

The heart of the Signal System is the Enable Memory that records the number of
times each instruction has been signalled by other instructions, and determines which
instructions have received needed signals and are therefore "enabled" for execution. The
Enable Memory will be implemented using custom VLSI; an experimental prototype has
been fabricated. The Signal System also contains a signal list memory which holds, for
each instruction, the list of instructions to be signalled once the instruction has been
executed. One proposal for the format of the signal lists and the functionality of the
controller has been developed by D. Marcovitz.

41

COMPUTATION STRUCTURES

A crucial element is the collection of data paths that form the interconnection of the
arithmetic units and the primary memories. The need to support a very high data
transfer rate implies that many connections will be needed, and a bit-sliced structure of
the data path appears most appropriate.

Several approaches to implementing the instruction execution control are being
considered. To minimize the number of overhead instructions that perform no
arithmetic, a powerful set of modes for fetching operands and results has been proposed,
including modes for entering and removing elements of FIFO queues and for exchanging
data packets with other processing elements. In the implementation, the instruction
execution control must have access to a pointer memory in which pointers and other
types of control information are stored. Since each instruction must go through several
stages of processing -- access of control information, address computation, operand
fetch, operation, result store -- pipelined operation is essential to achieve a high
throughput. Alternative structures for the instruction execution control have been
proposed but many details need further work. A semi-custom VLSI implementation is
anticipated.

4. THE ENABLE MEMORY

The Enable Memory (EM) is a key component of the static dataflow machine
responsible for the sequencing of instructions. It keeps a record of how many signals
each instruction cell has received and marks cells that have received the required
number of signals. These marked cells are said to be "enabled". One task of the Signal
System is to select enabled cells one at a time and forward their numbers to the
Instruction Execution Control. It is important for smooth operation of the dataflow
machine that each enabled instruction be executed promptly -- that it not happen that
other enabled instructions keep jumping ahead, causing a long delay for one instruction.
G.-R. Gao and K. Theobald have designed a prototype Enable Memory chip using
MOSIS CMOS 3-micron technology. It has about 4000 transistors and a capacity of 128
instruction cells. This prototype is expected to run at about 10 MHz, handling signals
from completed instructions at the rate of 2.5 MHz. The chip has been fabricated and
is awaiting testing and evaluation.

5. A SELF-TIMED DESIGN METHODOLOGY

T.-A. Chu is conducting doctoral research on a self-timed design methodology for
VLSI systems. This methodology is applicable to VLSI and capable of exploiting
concurrency. The methodology consists of a high-level organization principle, which
was first proposed by J. Dennis, and implementation techniques for self-timed circuits.
A graph model called the Signal Transition Graph (STG) has been developed by T.-A.
Chu for the specification and direct synthesis of asynchronous self-timed control
circuits. A STG is a directed graph with vertices representing the signal transitions at
nodes in the corresponding circuit module, and arcs representing the precedence

42

COMPUTATION STRUCTURES

constraints between signal transitions. The signal nodes are the input and output
terminals of logic components of the circuit module. The STG can be thought of as a

specialization of the Petri Net model in the following way: A Petri Net is a bipartite
directed graph consisting of two types of vertices, places and transitions. It is capable
of modeling concurrent systems in general. Finite State Machines represent one extreme
of the model by using only places and no transitions; hence, it has very limited
capability for describing asynchronous concurrent circuits. Our STG model differs from
Petri Nets in two important ways: First, it uses only transitions and no places; this

type of graph has been known as marked graphs. Secondly, a pair of transitions {+,-}

is associated with every node of a circuit, instead of a single transition as used in Petri
Nets. These specializations allow one to use STG to specify many types of control
circuits easily and also allow direct and efficient synthesis of the hardware modules.
STG can model all self-timed control circuits, those data-dependent and data-

independent, those with conflicts, and with concurrency.

Two self-timed VLSI chips have been designed using the methodology. One is a
CMOS self-timed Two-by-Two Packet Router that works at around 10 MHz, the second
is a NMOS FIFO chip that works at around 4 MHz. The router is the constituent
component of a communication network for the proposed dataflow computer that our
group is developing. A large routing network can be put together using the self-timed
two-by-two routers. The advantages of using self-timed components are the modularity
of construction and the absence of a global clock. The FIFO chip has a novel
organization called a Ring Buffer using distributed control circuits. This organization
permits the trade-off between area, latency, and throughput rate. It is believed that
these are two of the first truly asynchronous, large-scale systems successfully
implemented as single chips.

6. FAULT DETECTION AND RECOVERY STRATEGIES FOR A
STATIC DATAFLOW MACHINE

K. Theobald has begun an analysis of fault-detection and fault-tolerance strategies for
the static dataflow machine. The goal of the research is the development of general
strategies for adding redundancy to detect, and in some cases correct, errors resulting

from hardware failures. Since the dataflow machine itself is still in the design phase,
the strategies are to be sufficiently flexible to adapt to design changes. Therefore, the
research does not extend to the level of circuit or logic design; circuit and logic diagrams
are only used when illustrating a general strategy by example. However, the research is
comprehensive, ranging from hardware analysis to compilation techniques.

The preliminary phase of the project consisted of determining how the choice of
strategies is constrained by the nature of the machine and its intended use. For

example, since the goal of the machine is high-speed computing, temporal redundancy
(running the same program several times on the same machine, and voting on the
results) is unacceptable because the throughput of the machine is reduced two-fold or

43

COMPUTATION STRUCTURES

worse. On the other hand, the machine is not intended for real-time applications,
where a momentary delay in a computation might be disastrous (e.g., aircraft control).
It may use dynamic redundancy (selective re-execution of only those program steps that
were executed erroneously).

The next phase involved reviewing current VLSI technology to determine the major
sources of hardware failures in such systems. From this analysis, low-level fault models
have been devised and used as primitive failure models to see how hardware failures are
manifested at the logical and program levels.

The bulk of the research has been devoted to deciding how and where to add
redundancy selectively to the hardware to detect (and possibly correct) errors caused by
hardware failures. The system was divided into two parts: the processing elements and
the routing network. The processing element was further divided into the functional
execution unit and the sequencing control system, whose failure modes are different.
Fault-detection and correction strategies have been devised for these subsystems. The
only major portion remaining is the perfection of a time-out system to detect a certain
class of errors in the Enable Memory (part of the sequencing control subsystem). This
effort continues and builds on the work of Leung.

7. THE INTERACTION OF ROUTING NETWORK TRAFFIC AND
DATAFLOW INSTRUCTION SCHEDULING

A simulation model of a packet switched routing network for the static dataflow
machine, in the form of an indirect binary n-cube composed of two-by-two routers, has
been expanded and transposed from a previous model and developed in the simulation
language Simula. The new simulation model operates as a pseudo event-driven
simulator written in Pascal, using a more detailed model of the two-by-two router. The
expanded model of the two-by-two router models the timing of the actions of its
individual components (buffers, multiplexors, demultiplexors, input and output pins,
etc.).

The expected performance of the routing network, in terms of throughput, latency,
blocking of network inputs, and buffer utilization, is being examined with this
simulator. Studies have been made concerning the placement of buffers at various
places within the router, e.g., on the inputs, internal to, or on the outputs of the router.
Also examined were the effects of different patterns of communication across the
network, e.g., does each processing module talk to only a few other modules or many
other modules. Currently, the effects of different chip sizes and packet sizes, i.e., how
many bytes per packet are being investigated.

Studies so far have shown that the placement of buffers internal to the routers (as
opposed to on the router inputs or outputs) can greatly improve several aspects of the
network performance. Different patterns of communication across the network have
been shown to produce widely varying levels of network performance, depending on

44

COMPUTATION STRUCTURES

which processing modules communicate with each other. A simple method for assigning
code blocks to processing modules, such that the network always performs quite well,
has been developed. The effect of increasing packet size seems to be only a slight
degradation in network performance (less than 15% in throughput and latency for a
doubling of the packet size).

8. THE PROGRAM TRANSFORMING COMPILER

A compiler that produces efficient dataflow machine code from programs written in
the applicative language VAL is crucial to the success of the static architecture in large
scale scientific applications. To keep the architecture simple and efficient for
computations involving large arrays of numerical data, most of the decisions about
resource assignment (allocation of data structures to space in array memory and of
dataflow instructions to processing elements) have been entrusted to the compiler.

To accomplish an effective resource allocation, the compiler must transform the
program so that its structure is a good match to the processing power and memory
space of the target machine. Hence, the number of processing elements and the sizes of
the instruction and array memories will be parameters of the compiler. Global program
transformations are needed because the several sections of a large program must be
capable of operating together in a way that allows full utilization of performance
without requiring inordinately large amounts of memory for intermediate results. It is
reasonable to attempt such global program transformations because VAL is a functional
or applicative language, and therefore interactions among program parts occur only at
points that are evident from the syntactic structure of the program -- the impossibility
of "side effects" removes the major difficulty that inhibits use of global optimizations in
compilers for conventional languages.

The conceptual basis for such a compiler has been laid down in the doctoral thesis of
Ackerman, which develops loop unfolding and array interleaving optimizing
transformations for dataflow programs, and in the graduate research of Gao which
explores the concept of pipe-structured programs that support the pipelined execution of
dataflow machine instructions. Accordingly, compilation of a large program will
proceed by the following steps:

1) Syntax analysis; type inference and checking; static semantic checks:
Converts program into abstract syntax tree.

2) Graph generator: Converts program from abstract tree into "dataflow
graph" representation.

3) Simple machine independent optimizations: removal of records; constant
folding; common subexpressions.

4) Linker: Combines modules to form complete program for a task to be
performed by the machine.

45

COMPUTATION STRUCTURES

5) Analysis I: develop space/time estimate for presentation to user-for the

complete program if possible, otherwise, by modules with indication of where
the analysis is incomplete and why.

6) User interaction: The user augments the data generated by the compiler's
analysis and confirms the transformations to be applied.

7) Transform 1: Array interleaving and loop unfolding: This implements the
basic space/time tradeoff involved in matching a problem to the machine.

8) Transform II: Pipelining: This implements sections of the program as
"maximally pipelined" code blocks wherever profitable.

9) Analysis II: Prediction of code performance and memory requirements on the
basis of the selected program structure (from analysis and advice).

10) Code generation: generate code for the target machine.

The program transforming compiler will accept valid VAL programs and produce
target code for static dataflow computers. It will attempt to generate pipe-structured
object code whenever the source code allows. For some programs optimal code of this
form can be produced algorithmically, given parameters characterizing the machine. In
these cases, nearly full performance of the machine will be realized for any program
that allows sufficient concurrency without exhausting the machine's memory. For other
programs, program transformations will be used to convert the code into a form that
can make better use of the target machine. The choice of transformations to be applied
will be guided by the compiler's structural analysis of the source program, and the
programmer's advice given in response to the compiler's analysis. The advice will
concern the degree of interleaving to be used for arrays and the degree of unfolding of
loops to be" used by the compiler. This advice is needed for programs in which the
compiler's analysis is incomplete due to the absence of such information as: the number
of cycles performed by loops (termination test depends on a computed value); size of
arrays (index range is not a compile-time constant); the frequency of selecting arms of a
conditional (when the computations are of very different form for the different arms).
We envision that the advice file will have the form of a tree representation of the
program structure with annotations that constitute the advice.

W. Ackerman has begun implementation of optimizing transformations for dataflow
programs. At this writing, the global unfolding of record structures has been
accomplished. This'sort of global optimization would be considerably more difficult to
implement for a language that was not applicative.

46

COMPUTATION STRUCTURES

9. THE VIM PROJECT

The VIM project aims to develop an experimental computer system based on principles
of data-driven instruction execution and functional programming languages. The project
is unique in striving for a system that will serve multiple users with a degree of
semantic coherence well beyond what contemporary computer systems are able to offer.
It also differs from other efforts to build systems to support functional programming in
that the issues of efficient execution of functional programs over a hierarchical memory
are addressed and solutions developed. The system uses a base language that is a form
of acyclic dataflow graph, and a user language VIMVAL that is an extension and revision
of the functional language VAL.

9.1. VIMVAL

Effort on refining the design of VIMVAL during the past year has focused on the role
of modules and the means of binding free names in modules to form executable program
units. In the VIM system, program modules are written in VIMYAL and are compiled
separately. The programmer creates a runnable program by using the bind command of
the VIM system shell to associate values with the free names of some module. The
resulting closed module defines a value which may be bound to a free name of yet
another module. In this way, a runnable program unit that is a tree (actually a directed
acyclic graph) of linked modules can be constructed. The absence of cycles in the linked
program is guaranteed by requiring that only closed modules be bound to free names.

Usually the value defined by a (closed) module will be a function, but we extend the
notion of module to include any value representable as VIMVAL text such as an integer,
a string, or any data structure built of arrays and records. Thus, a module can define
any constructible data object which has a VIMVAL type specification. In this way,
traditional data objects and functions are treated as equals. This feature avoids a
problem present in many programming environments: how to handle the global
constants of a program. Instead of having to set up some kind of global environment for
such values, they can be collected in a VIMVAL record that is the value of a closed
module. Adjusting any of the "global" parameters is simply a matter of recompiling
the parameter module and rebinding the modules that use them.

The restriction to acyclic structures of closed modules does not rule out recursion and
mutual recursion. Such functions may be expressed within a single VIMVAL module as
a set of mutually recursive function definitions. Such a set should be conceived of as a
unified entity. Viewed from outside, the recursive set is an just an ordinary function
definition. This idea is one embodiment of the principle that modules are
independently written program units that should be comprehensible without reference
to the internal workings of other modules.

In the VIM system, we require that all code be type checked before execution,
providing a guarantee that no type conflicts will occur during program execution.

47

COMPUTATION STRUCTURES

Within a VIMVAL program module most type specifications are optional, since the

compiler can infer the type of an object from its context. However, in certain situations

the compiler may be unable to infer the type of an expression. In such cases the

programmer must insert a type specification. At other points a programmer may wish

to insert a type specification just to improve program readability.

However, omitting type specifications from the module header would be inconsistent
with the principle that a user need not inspect the module body to determine its
legitimate uses. Therefore, each module has a header that gives type information for
each argument, each result, and each free name of the module. This information must

be sufficiently complete that the user of the module may construct a module that uses
the given module and know that no type conflicts will occur when any legal binding is

performed to create a runnable program unit.

Since complete type information is not always needed in module headers to support
this need, the VIM system provides for partial type definitions. For example, a
programmer may wish to specify that an argument or result is an array, but not the
type of the array elements, because their type is immaterial. Then the type specification
array[t] may be used where no type specification is given for t indicating that it is a
type variable. One use of partial type specifications is to constrain the range of types so
the compiler may produce more efficient code. Another use is to specify polymorphism,
as in the header of a sort program

function Sort (Data: array[value], Keys: array[tag], Test:
function (x,y: tag) returns(boolean))
returns(array [value], array[tag])

where value and tag are type variables.

Various language constructs for expressing the computation of array objects have been

investigated. These computations can normally be expressed using simple array
operations, such as append, in a tail recursive function definition. However, in many
cases where the computation is expressed as a tail recursive function definition, it is
difficult for the compiler to generate code that uses storage efficiently. In addition, the
programmer may find it awkward or inconvenient to write the computation in this
form. We have found it desirable to include a special language construct for these cases
that permits easy generation of good code and that provides the programmer with a
simple, semantically clean language construct.

A related area of investigation involves general recursion in VIMVAL. General
recursion allows recursive equations to define data structures. Some array computations
can be considered as special cases of general recursion. For example, if there is a
recurrence relationship among the elements of an array, then the entire array may be
easily defined by a set of equations that specify this recurrence relationship. However,
several difficulties are raised by the inclusion of general recursion in the language,
among them the capability for the programmer to express circular data structures. A
problem of current interest is finding an efficient implementation of general recursion
within the framework of the VIM system.

48

COMPUTATION STRUCTURES

9.2. Operational Models for VIM

Two projects concerning the implementation of large data structures and the backup
of information in VIM are being completed as master's theses. So that these studies
may be done in terms of a precise understanding of the program execution model of
VIM, formal operational models for VIM have been formulated by B. Guharoy and
S. Jagannathan. The first model, L1, specifies the semantics of the dataflow graphs that
represent programs executed by VIM. In L1, there is no explicit modeling of hardware
elements of the implementation -- the model is abstract and suitable for understanding
the correctness of a compiler from the VIMVAL language into dataflow graphs. This
model, and the other models to be mentioned, consist of a set of system states and an
interpret function that defines a set of non-deterministic transitions between states. In
L1, a system state has three components: a set of function activations; a heap which
contains, among other things, structure values and function templates; and the set of
enabled instructions (enabled nodes of the dataflow graph). This latter set contains
those instructions in the activations that have received all operands and signals
necessary to enable execution. There is no concept of memory in this model; it treats
structure types as sets and structure values are simply elements in these sets. The
interpreter is a state transition function mapping from a state and an enabled
instruction to a set of possible next states. The rationale for developing this model is
two-fold: First, it provides a simple but precise mathematical description of system
operation as a formal interpreter of datafiow program graphs. Second, this model
serves as a suitable basis, through augmentation and refinement, for rigorously defining
aspects of system implementation, as described below.

For the study of the implementation of data structures in the VIM memory hierarchy,
B. Guharoy has developed a second operational model, L2. This model includes a
storage model that reflects a physical storage hierarchy consisting of a main store and
disk. Here the program representation is the same as in L1, but the heap is modeled by
a collection of fixed-size memory chunks which are either accessible (meaning they
reside in fast (main) memory) or inaccessible (meaning that the chunk is held only on
the disk memory). The model includes the reference count scheme by which chunks are
identified as unreachable and therefore the space occupied is available for reallocation.

In his master's thesis, B. Guharoy establishes correctness of a set of algorithms for an
implementation of general array operation using chunk allocation in a hierarchical
memory. This is achieved by showing that L2 and Li have equivalent behavior using
the proof method developed by D. Berry and C. McGowan.

0.3. Backup and Recovery in VIM

In his master's degree research, S. Jagannathan has developed the design of a backup
and recovery system for the VIM computer system. The goal is to design procedures to
guarantee the security of all accessible information in the system against loss or
corruption as a result of hardware failure. The mechanisms to achieve data security on

49

COMPUTATION STRUCTURES

conventional systems are based on the existence of a file system that uses memory space

independent of that used by the basic program execution facility, and exploit the fact

that updates of files take place relatively infrequently and usually replace the file in its

entirety. This implementation has the unfortunate consequence that all activity

performed since the last update action is lost when the system fails. The backup and

recovery system proposed for VIM takes advantage of the novel aspects of VIM -- its

powerful applicative base language and the data-driven architecture of the system.

In VIM, long-lived objects are bound to names in an environment associated with each

user. The backup system preserves the environment by copying values onto the backup

store as they are defined in response to user commands. The information placed in
backup store by this mechanism is called quiescent data. The backup system also
maintains an activation log of all active computations in the system. When the system
fails, recovery is accomplished as follows: First, the recovery system uses the quiescent
backup data to restore a past system state; then interpreting the activation log will
bring the system forward to the its state immediately before the failure. The activation
log is a directed tree in which nodes correspond to function activations, and arcs
represent caller/callee relationships. The thesis shows how the execution rules for certain
VIM instructions may be augmented to incorporate the necessary building of the
activation log. It is also shown how the recomputation of values can be avoided by
storing pointers to computed results in the activation log, thus preventing long recovery
times for long running commands.

The backup store consists of a stable storage device used to hold the activation log,
and a large mass storage device, such as tape. Information on stable storage is immune
to the effects of hardware failure and is easily accessed and updated. Stable storage is
presumed to be too expensive to hold the entire backup state, so a cheaper storage
device, such as redundant tapes, is needed to hold quiescent data.

S. Jagannathan has designed the backup system to handle the creation of stream
elements produced in a demand-driven fashion and has included optimizations to handle
tail recursive functions.

10. FUNCTIONAL LANGUAGE IMPLEMENTATION ON THE
CONNECTION MACHINE

Programs written in an applicative language exhibit a large degree of parallelism, and
the connection machine is a highly parallel machine. In his master's thesis,
B. Kuszmaul has hypothesized that the connection machine will perform well running
such programs, and that there is much to be learned about applicative programming
from a high performance testbed. He is studying several implementation schemes for
applicative languages through simulation on the connection machine. These include
static dataflow, VIM-style dynamic dataflow, and combinator reduction. For this study,
Kuszmaul has developed a new programming model for the connection machine well
suited to writing highly parallel interpreters for applicative languages. The objective is

50

COMPUTATION STRUCTURES

to evaluate the suitability of the connection machine for each of the implementation
schemes mentioned above. VIM is an experimental computer system based on principles
of data-driven instruction execution and functional programming languages. The project
is unique in striving for a system that will serve multiple users with a degree of
conceptual coherence well beyond what conventional computer systems are able to offer.
It is also distinguished from other efforts to build systems to support functional
programming in that the issues of efficient execution of functional programs over a
hierarchical memory are addressed and solutions are developed. The system uses a base
language that is a form of acyclic dataflow graph, and a user language VimVal that is
an extension and revision of the functional language VAL.

51

COMPUTATION STRUCTURES

Publications

1. Ackerman, W.B. "How to Design Simulatable CMOS Integrated Circuits,"
VLSI Memo No. 85-237, MIT,Department of Electrical Engineering and
Computer Science, Cambridge, MA, March 1985.

2. Chu, T.-A. "Design of a CMos Self-timed Two-by-Two Packet Router,"
Computation Structures Group Memo 242, MIT Laboratory for Computer
Science, Cambridge, MA, December 1984.

3. Dennis, J.B. "Modeling the Weather with a Data Flow Computer," IEEE
Transactions on Computer, (July 1984).

4. Dennis, J.B. "Data Flow Computation," Control and Data Flow.Concepts of
Distributed Programming. Manfred Broy, (Ed.) Springer-Verlag, Berlin,
Heidelberg, New York, NY, 1985.

5. Gao, G-R. "Pipelined Mapping of Homogeneous Data Flow Programs,"
Proceedings of IEEE International Conference on Parallel Processing,"
Cambridge, MA, August 1984.

6. Lim, W. Y-P. "A Design Methodology for Stoppable Clock Systems,"
Computation Structures Group Memo 240, MIT Laboratory for Computer
Science, Cambridge, MA, August 1984.

Theses Completed

1. Boughton, G, .. "Routing Networks for Packet Communication Systems,"
Ph.D. dissertation, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, September 1985.

2. Guharoy, B. "Data Structure Management in a dataflow Computer System,"
S.M. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1985.

3. Markowitz, S. "VLOE: A Val Language-oriented Editor," S.B. thesis, MIT
Department of Electrical Engineerik.g and Computer Science, Cambridge,
MA, September 1984.

Theses in Progress

1. Gao, G-R. "A Pipeline Code Generation Scheme for Static Data Flow
Computers," Ph.D. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected January 1986.

52

COMPUTATION STRUCTURES

2. Jagannathan, S. "Guaranteeing Data Security in a Dynamic Data Flow
Machine," S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected September 1985.

3. Theobald, K. "Adding Fault-Tolerance to a Static Data Flow
Supercomputer," S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected September 1985.

4. Wanuga, T. "Routing Network Performance in a Static Data Flow
Machine," MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected September 1985.

Talks

1. Dennis, J.B. "Data Flow Computation," six lectures at International
Summer Course on Control Flow and Data Flow: Concepts of Distributed
Programming, Marktoberdorf, Germany, August 1984.

2. Dennis, J.B. "Data Flow Computing" RIACS Workshop on Evaluation
Study of dataflow Computation, Moffett Field, CA, September 1984.

3. Dennis, J.B. "On the Form and Use of Distributed Computer Systems,"
Keynote address given at IEEE Conference on Distributed Systems, Denver,
CO, May 1985.

4. Gao, G-R. "Pipeline Mapping Scheme for Array Operations on Static Data
Flow Computers," IBM, Yorktown Heights, NY, August 1984.

5. Gao, G-R. "Principals of Pipeline Code Generation Scheme for Static Data
Flow Computers," RIACS Workshop on Evaluation Study of dataflow
Computation, Moffett Field, CA, September 1984.

53

DISTRIBUTED COMPUTER SYSTEMS

Academic Staff

D. Clark, Group Leader

Research Staff

L. Allen M. Lambert
M. Greenwald E. Marten

Graduate Students

R. Baldwin K. Sollins
J. Gibson L. Zhang
T. Ng

Undergraduate Students

J. Barba R. Reuss
D. Bridgham J. Romkey
J. Lunny M. Rosenstein
C. Newman C. Warack

Support Staff

E. Felix

DISTRIBUTED COMPUTER SYSTEMS

1. INTRODUCTION

During the 1984-85 period, there has been considerable rearrangement of this group's
activities, with the completion of a major project and the departure of several group
members. Some new projects have been initiated as well; the various efforts are
discussed in the sections below.

2. THE SWIFT OPERATING SYSTEM

The purpose of the SWIFT project was to demonstrate an operating system suitable
for the efficient implementation of such programs as network protocols. The project
started about three years ago and was essentially finished during this year. A running
kernel for the system was demonstrated and several programs were implemented to run
on it, such as a version of TCP/IP.

This project has been described in detail in previous progress reports, and the final
results are reported in a paper submitted for publication [1].

A brief summary of the conclusions are as follows:

" The program structure demonstrated in SWIFT, in which lower level
programs call back to programs invoking them from above, is an effective
program structure;

" CLU is a reasonable language in which to program such constructs; the run
time type-checking required in this case is not inconsistent with the general
compile-time checking philosophy of CLU, and the efficiency is adequate;

" Using type-checking as a protection tool for a single shared address space is
effective; and

" Use of monitors to control sharing of state among processes is reasonable.

The only current effort underway on the SWIFT system is the development and
demonstration of a fault recovery mechanism. It can reconstruct the system after a
failure of one or more processes and in many systems, storage associated with a failed
process is reclaimed by discarding the address space of the process. Yet SWIFT operates
with all processes in one shared address space, so this reclamation technique is
ineffective. Instead, special tools are needed to identify and reclaim data objects
associated with the failure and are being pursued by J. Gibson as a Master's thesis.

56

DISTRIBUTED COMPUTER SYSTEMS

3. PROJECTS IN DISTRIBUTED COMPUTING

3.1. Non Real-Time Delivery Protocols

Most of the current network protocols are based on the idea that the two ends of a
connection are in real-time communication with each other, exchanging information
back and forth as part of an ongoing transaction. There is an alternative paradigm,
which is that communication is not done in real time, but rather by messages that are
sent from one end to the other (perhaps with substantial delay) as in computer mail.
For personal computers, which are often disconnected from the network, this alternative
communication paradigm seems very natural. Unfortunately, this staged delivery
paradigm makes unusable most current algorithms for distributed synchronism, such as
two-phased commit. For this reason, it is necessary to rethink the class of algorithms
which can be utilized in this context.

T. Ng has been studying possible synchronization algorithms for use in staged delivery
situations. He has developed a number of techniques for serialization and recovery,
which depend on permitting the application to see intermediate states of the
computation, and requiring the application to assist in rolling back the computation in
unusual circumstances.

3.2. Distributed Mail

As part of the research in non real-time protocols and the personal computer, several
members of the group have developed a protocol for allowing a human to process
computer mail from an IBM PC. A central node, called the repository, holds the master
copy of the user's mail, while the PC provides the user interface. In fact, the user can
use more than one PC to read mail (perhaps one in the office, one at home and one in
the briefcase). The repository keeps track of the current state of these various PCs, and
attempts to synchronize the local copy of the mail database within each. Of course,
since the machines are not always on the network running the mail software, this
synchronism cannot be perfect; we have developed the protocols to deal with the
resulting inconsistencies. This mail program is now in initial test by a few members of
our group, and should be available for more general use during the summer.

3.3. Distributed Calendar Maintenance

Another non real-time protocol was developed by M. Rosenstein to synchronize several
versions of an appointment calendar located on separate PC class machines. Again, the
various machines were assumed to be available only intermittently. In this case, the
synchronization was not done using a master copy; instead the various copies tried to
keep each other in step by sending special mail messages to each other. A preliminary
version of this application will be completed over the summer.

57

DISTRIBUTED COMPUTER SYSTEMS

4. PROJECTS IN NETWORK PROTOCOL DESIGN

4.1. Unified Stream Protocol

D. Clark developed a protocol called Unified Stream Protocol, or USP, which is
designed to facilitate interworking among different protocol families. It specifies a
uniform set of semantics which a client at the application layer should assume, and
shows how to provide that semantics using any of the popular transport level virtual
circuit protocols. This proposal is now under consideration by various of the network
communities.

4.2. Reliable Circular Multicast Protocol

J. Romkey developed a protocol called Reliable Circular Multicast Protocol, or RCMP,
as an undergraduate thesis. Its purpose is to provide a logical connection between a
number of machines in such a way that when any of the machines sends, all are
guaranteed to receive. This protocol was intended for small messages and for a small
number of hosts, such as a teleconference or a computer game. The first implementation
done was for the IBM PC; it shows good performance, with 5 to 10 ms. delay in
delivery per node in the connection.

4.3. Bulk Data Transfer

D. Clark developed a protocol for bulk data transfer, called NETBLT. NETBLT
provides a reliable delivery of data, but differs from traditional reliable protocols such
as TCP in a number of ways. In particular, its user interface and flow control differ
and, instead of a window scheme for flow control, it uses an open loop rate controlled
flow. Implementation of this protocol was done by D. Bridgham as an undergraduate
thesis.

4.4. Congestion Control and Routing

L. Zhang continued her work on congestion control algorithms for network and
internetwork management. Using a simulator, she has demonstrated that the current
algorithms in the DARPA Internet suite do not work well. She has proposed some
alternative mechanisms for congestion control, which have been incorporated into the
NETBLT protocol mentioned above.

5. DISTRIBUTED NAME MANAGEMENT

[This work was initially done in the Computer Systems Structures group]

K. Sollins completed her doctoral thesis entitled "Distributed Name Management"

58

DISTRIBUTED COMPUTER SYSTEMS

during this past year. Since this work has been discussed in the previous two progress
reports, it will only be summarized here.

The problem being addressed in this research is the design of a naming facility
achieving the following goals: First, two functions on names must be supported--
accessing a named object and acting as a place holder for the named object. Second, it
must be possible to share those names. Third, communication of the names as well as
communication by use of the names must be possible. In addition, feasibility of
implementation is a goal. In this research a name is defined to be an object that can be
associated with another object and has an equality operation defined on it. The
assumed system model is a loosely coupled distributed system defined in previous
reports as a federation.

The research addresses this problem with: (1) a detailed analysis of the naming
problem and the nature of names themselves; (2) a proposal for a set of mechanisms
that addresses the problem above, including the proposal of two new types of objects
and the mechanisms for their use; and (3) two examples of uses of the model. The
model consists of private views (known as aggregates) of shared, local namespaces
(known as contexts) allowing shared use of names and supporting shared responsibility
for management of the namespace. In addition, the model provides for the acceptance
and deletion of names in stages within a context. A context is parameterized by both a
definition of the set of stages through which a name will pass in the process of being
accepted and procedures for acceptance and deletion. Joint management as exemplified
in the procedures of acceptance and deletion form an important part of this research
effort. The two specific domains to which the model is applied are electronic mail, in
the form of an implementation, and programming support environments, in a detailed
study.

The contributions of the research include an investigation into the nature of names,
an analysis of naming as a social process especially recognizing both the joint
management of names by the users of those names, the fact that acceptance and
possibly deletion occur in degrees, and the proposal for a mechanism to address these
issues.

6. EXTENDED REACH NETWORKS

[This work was originally done in the Computer Systems and Communication Group]

6.1. A High-Speed Packet-Switching Network for CATV Systems

D. Feldmeier is writing a Master's thesis that proposes a preliminary design for a high-
speed, packet-switched network for residential CATV (Community Antenna Television)
systems to provide digital data communication to the home. This network consists of
stations that transmit data on an upstream cable channel to a network controller that

59

DISTRIBUTED COMPUTER SYSTEMS

repeats the data to all stations via a downstream channel. A design goal for this
network is to change the existing cable system as little as possible, ideally adding only a
network controller at the headend, and interface cards at the subscriber end. A related
goal is complete compatibility with existing cable equipment, television sets, and cable
channel allocation.

Professionals are beginning to use personal computers extensively for their work not
only at the office, but in the home as well. For the computer-oriented professional, a
personal computer at home offers many advantages: evening or weekend work is
convenient and an office in the home allows a worker to avoid commuting and
interruptions during the day. As the price of personal computers continues to drop, the
office in the home will become more popular, but it becomes realistic only if the home
computer can be effectively linked to the office computer system. To work efficiently, a
professional working at home needs the same services that are available at the office.
Services are provided to computers in the office by a local area network, which supplies
high-speed communications over a limited geographical range at low cost. The network
connects computers to each other and to services too expensive to provide to each
individual, such as high-quality printers, mass storage, and high-speed data processors.

High-speed, low-cost communications must be brought to the home to support the
services provided in a local area network environment. Communication from the home
today is done with the telephone system, which provides low-speed communication and
wastes telephone system resources. A CATV system can be the basis of high-speed, low-
cost data communications from the home with few changes to the cable system itself.

Although all the aspects of the network will be discussed, the primary emphasis of the
thesis is the upstream transmission method and the network access scheme. Because of
the converging tree topology of a CATV system, the noise arriving at the CATV
headend is the amplified sum of all the noise over the entire system; consequently this
noise makes upstream transmission difficult. In addition, the frequencies used in the
upstream direction are routinely used for short-wave communication and the CATV
distribution plant make an effective antenna at these frequencies. To combat these
noise problems, several upstream transmission techniques are discussed, including
spread-spectrum modulation.

The access scheme for a CATV network is another difficult problem. Local area
network access schemes such as Carrier Sense Multiple Access with Collision Detection
(CSMA/CS) become inefficient with increased propagation delay, making them
unsuitable for a CATV network with its large propagation delay. Satellite access
schemes are more efficient, but have slow response times. A variation on a satellite
access scheme is suggested as an alternative that would work well on a CATV network.

60

DISTRIBUTED COMPUTER SYSTEMS

6.2. Inter-Organization Networks

D. Estrin is writing her doctoral thesis on the interconnection of computer networks
across organization boundaries. Inter-Organization Networks (IONs) are used to
support person-to-person communication; exchange of CAD/CAM data, software
modules, or documents; input to an order/entry or accounting system; or use of shared
computational resources. This inter-disciplinary research addresses usage control
requiremrnts and mechanisms for IONs, and the organization implications of the new
medium.

When distinct organizations interconnect their internal computer networks, they
encounter new access control requirements. Each organization would like to
discriminate between external and internal users of its computer-based facilities.
However, unlike some security requirements, the goal is not to prevent outside access
altogether. One obvious solution is to increase access control on all internal facilities.
However, controls tailored to restrict outsiders may interfere with internal
communication and resource sharing. In addition, it is impractical to require
modification of all internal systems. Finally, given the decentralized administration of
many networks, it is difficult to assure conformance with new policies and
interconnections. The obvious solution is objectionable and we conclude that
administrators and users of strictly-internal resources should not be required to take
action in order to be protected from external access.

A scheme has been developed that satisfies these constraints using non-discretionary
control mechanisms in all entry and exit points to an organization's internal network
(i.e., the Inter-Organization Network gateways). In order to accommodate different
policy requirements, the non-discretionary control mechanisms employed differ in subtle
ways from previous non-discretionary mechanisms. The approach presented has
implications for network interconnection protocols because of the need to associate
policy information with each packet, message, or connection. Alternatives to packet-
level interconnection, and related implementation issues, are evaluated in this light.

Participating organizations can use the speed, incremental cost, range of capabilities,
and automatic nature of computer-based communications to support new interchange
patterns. A descriptive model has been developed which explains how the use of Inter-
Organization Networks affects interchange in several domains (e.g., manufacturers-
subcontractors, research, customer-supplier). The model describes the technical
characteristics of IONs that underlie changes in the economics of inter-organization-
communication; the opportunities for ION participants to adopt more efficient and
effective communication and interchange patterns -- more intense communications of
greater scope; the opportunities for ION participants to expand and enhance crows
boundary activities -- more cross-boundary activities and with a larger number of
outside organizations; and the problematic effects of ION use on interchange and cross-
boundary activities--more segmented and penetrating interchange, restricted sets of
interchange partners, and more explicit administrative and technical controls on cross-
boundary flows.

61

DISTRIBUTED COMPUTER SYSTEMS

The model can be used to both explain and inform the design, deployment,
management, and regulation of IONs. To evaluate the model, we conducted an
empirical study of ION use among commercial and university research and development
laboratories.

62

DISTRIBUTED COMPUTER SYSTEMS

References

1. Clark, D. "The Structuring of Systems Using Upcalls," MIT Laboratory for
Computer Science, Cambridge, MA, submitted for publication.

Publications

1. Estrin, D. and Sirbu M. "Standards," to appear in International
Encyclopedia of Communications, Norwood, NJ, Ablex, 1986.

Talks

1. Allen, L. "The Use of Upcalls in SWIFT," IBM/ACM SIGOPS Workshop
on Operating Systems in Computer Networks, Zurich, Switzerland, January
29, 1985.

2. Allen, L. "The SWIFT Operating System," The Computer Laboratory,
Cambridge University, Cambridge, England, January 31, 1985.

3. Estrin, D. "Non-Discretionary Controls for Inter-Organization Networks,"
1985 IEEE Symposium on Security Privacy, Oakland, CA, April 1985.

63

EDUCATIONAL COMPUTING

Academic Staff

H. Abelson S. Papert
A. diSessa, Group Leader S. Weir

Research Staff

E. Lay

Graduate Students

M. Eisenberg E. Long
L. Morecroft F. Turbak

Undergraduate Students

J. Boyle J. Roschelle
C. Humphreys R. Oellette

Support Staff

P. Davis J. Karaslaanian

M.Palmgren

Visitors

W. Higginson M. Kliman

W. McKay

EDUCATIONAL COMPUTING

1. OVERVIEW

The commitment of the Educational Computing Group to pursue a broad approach to
educational problems and innovation has continued this year. Most of our activities
involve some combination of work in the areas of: (1) Technology: building and
adapting the best that contemporary hardware, software, and computer science has to
offer to education; (2) the Educational Context (Schools, Teachers, Students and
Curriculum): maintaining contact with the educational system as it stands so that our
innovation is responsive; and (3) Cognitive Studies: simultaneously attacking the long-
term and deep issues of learning.

This year, the greatest emphasis was on technology. Our Boxer project, which aims to
provide a very broad spectrum of capabilities to non-professional users, is the bread and
butter of the Group. We continued to develop the implementation and specification of
the system. In particular, we added a conceptually simple but broadly functional
graphics facility. As we close in on settling the basic semantics and functionality of the
system, we look forward to developing applications by ourselves and in cooperation with
teachers and curriculum developers, and also to more serious studies of the learnability
of the system.

In the area of educational context, our impact on the outside educational world will
shortly be significantly enhanced by another major publication, S. Weir's books
Cultivating Minds: A Logo Casebook. In addition, several small curriculum
development projects progressed, and cooperative work with Papert's Laboratory is
developing several major sites in which to experiment with innovations "in the real
world."

As usual, cognitive studies were spread among other activities, but continued to focus
on learnability of computational systems, understanding, and developing children's
spatial and other intuitive knowledge.

2. TECHNOLOGY

2.1. Boxer

System Semantics -- During the year, steady progress has been made working out
the basic computational semantics of the system, and gradually converting our
experimental system toward the agreed-on specification. The current major
implementation task is to rebuild the Boxer interpreter according to our latest
specification, which is largely being carried out by E. Lay. Here, by way of example, we
give an overview of data objects in Boxer.

One of our major decisions, to forego distinct atomic data types, has been
implemented. This leaves only one kind of data object. Data boxes may contain any
text or other Boxer structure, including data and procedure definitions. These may be

66

EDUCATIONAL COMPUTING

accessed in any number of ways to achieve different functionalities. Data boxes may be
accessed as a whole, by item number, by row, by row and column (matrix), or by
named subpart (record). Data boxes that contain procedural definitions can by used
with Boxer's remote procedure execution capability to achieve functionalities usually

associated with actor for data abstraction capability.

Reference to data boxes normally works via an information transmission metaphor,
that is, all references imply a (virtual) copy so that users do not see any sharing. It is
our conviction that this is by far the simplest way for beginners to think about passing
around and using data.

A port is a view on some data box, called the port's target, that lives in any arbitrary
part of the user's spatially organized Boxer universe. Ports are kinds of boxes aimed at
implementing sharing, for more advanced users. They are "sticky" in the sense that
any reference to a port, e.g., by name or by selecting a subpart, also becomes a port
reference to (part of) the target of the port. Thus, ports support the complementary
reference metaphor of object reference, which conventional pointers also implement.
This means that mutation to a port changes the data for every part of Boxer that has a
port reference to that same data. If one needs to pass actors as data objects, one
actually uses a port to the actor (data box) in order that any state change in the actor
is seen by a part of the system that shares references to that actor.

Graphics -- As an example of increased functionality of Boxer achieved this year, we
briefly describe a much expanded graphics sub-system implemented by J. Roschelle.

The graphics system seeks to extend the turtle graphics of Logo. It has generalized
graphical objects called sprites that live inside of graphics boxes. (The reason that we
have graphics isolated in a special kind of box is that all other parts of Boxer are
manipulated in the same way, with the extended text/box editor. Graphical objects in
their ordinary form cannot be manipulated in that way, hence we chose to isolate that
different interaction mode spatially.) Like turtles, sprites can move and turn; their
shape can be set to be that described by any turtle program and may include text (and
in the future, shading); their size can also be adjusted separately.

Sprites can have sub-sp.,,es, for example, the sprite in Figure 5-1 has two sub-sprites
which are hands of the clock. The user can move the clock as a whole, TELL CLOCK
FORWARD 100; or he can talk to the subparts, for example, TELL BIG-HAND RIGHT
6, to turn the hands of the clock. Sprites are sensitive to the mouse cursor in that they
highlight themselves when the cursor moves over them. In that case, pressing mouse
buttons causes user-defined procedures to be activated in the sprite. This means it is
very easy with this graphics system to create information appliances that work using
only the mouse, much as Macintosh and similar software does. Indeed, one of the aims
of the graphics system is to support other user-definable modes of interaction defined by
the Boxer editor. Special commands like FOLLOW-THE-MOUSE extend the
functionality of mouse operations on sprites. Sprites can draw with a pen, like a turtle;

67

EDUCATIONAL COMPUTING

they can stamp their shape on background in their graphics box; and they are sensitive
to other sprite's touch, which simplifies writing may kinds of programs involving

interacting objects.

Graphics

UaDataic Data• ~ ~ J Ir p do sB

Subsprotes appear belowj:

-- bpr ite -~ 7~fDta] D~ii aa

Data Dat a

[Mu-- a6 D ata

Figure 5-1

Graphics boxes actually have two forms. The primary form is purely graphical, as
they are mostly intended to be used. But in order that every part of the system be
visible and manipulable in the same way, graphics boxes can also be turned into
graphics data boxes, in which case the sprites contained in the graphics box have the
usual box structure that is Boxer's hallmark. In this form, graphics boxes and sprites
can be named and manipulated with the editor in the same way as all other kinds of
boxes. The second box in the figure is the same graphics box turned into its "data"
form. Note the sub-sprites that appear inside the clock sprite. The spatial relation of
containment means "part of" for graphical objects. In the data form, one can see the
position coordinates of the sprites, and one can see other attributes (boxes) that are
either built-in to all sprites (like HEADING) or have been added. Naturally, when a

68

EDUCATIONAL COMPUTING

sprite is given a command like FORWARD 100, its position coordinates change on the
screen if the graphics box is in its data form. And if one changes the coordinates
directly with the editor, the position of the sprite in the graphics box changes. One will
see that change as soon as one returns the graphics-data box back to its purely graphic
form.

User Interface -- In order to explore other modes of interaction with Boxer,
R. Ouellette attached a touch screen to our development machine, and implemented
software features in Boxer that allow all editor functions and any user-defined function
to be operated by poking the screen. A novel feature of the system is that it supports a
mode in which the part of the screen around the touched point is expanded in size, so
that the physical resolution of touching implement (e.g., finger) is no longer an issue.
Single character resolution is very easy to achieve.

Videotape -- With the help of D. Smith of Umbrella Films, a second videotape of
Boxer was completed this year. The tape concentrates on showing how Boxer can
change the meaning of programming from an esoteric activity for professionals and
experts to something that students, teachers and pedogogically (but not technologically)
sophisticated developers can use to develop and adapt their own applications. The tape
shows a personal journal, a Boxer environment for teaching Boxer, several "information
appliances" (little programs that work like miniature spread-sheets or other concrete
data processors) and a video book on physics which includes both text and a working
optics simulator that can compute the view of an object through an arbitrary user-
defined optical system.

Boxer video II was shown at the San Francisco meeting of ACM SIGCHI in 1985.
Selections will appear in the conference proceedings video.

2.2. Understandability of Computation

Two master's theses exploring issues in building easier-to-understand computational
systems are near completion.

M. Eisenberg has designed and implemented a version of Scheme, called Bochser, that
uses some ideas imported from Boxer to visually represent much more of the system
than can be seen in ordinary implementations of the language. His implementation, on
a Symbolics Lisp Machine, takes particular care to make environment structure explicit.
Preliminary use of the system by beginning Scheme programmers is quite encouraging.

F. Turbak has designed and partially implemented a system that begins with the same
intent, to make computation more understandable by representing it visibly, but he has

concentrated on the dynamic structure of the language. His assumption is that one can
and should incorporate all the major aspects of a mechanistic model of the language's
operation into its visual representation. By literally watching the system operate, users
are much more likely to learn a coherent model of the system's operation. A

69

EDUCATIONAL COMPUTING

particularly novel feature of the system called Grasp enables learners to begin with
objects called activations, something like a function invocation, and only later come to
abstractions of activations, the equivalent of function definitions. One of the attractive

aspects of this design decision is that, in terms of activations, the entire history (and
even possible futures!) of a program's execution can be leisurely inspected in a static
structure. The system also implements reversibility: one can watch programs executed

forward or backward in time.

3. EDUCATIONAL CONTEXT

Getting our ideas out to the world of education is a particularly important subtask for
the group. As highlighted in the overview, S. Weir's about-to-be published book
Cultivating Minds: A Logo Casebook makes a significant contribution to the group's
already substantial output. In the book, some of the major and enduring conceptual
issues of learning are addressed from the particulars of experiences with children
learning with Logo. Individual styles and competences are treated with particular care
and concern.

On other fronts, Dr. Weir is just completing a two-year project run cooperatively with
the Carroll School for disabled youngsters. The project focused on analyzing and
capitalizing on strengths in spatial reasoning shown by dyslexic children. Data is
currently being analyzed.

Curriculum Projects: A number of small projects are in progress to develop and

test materials for use with students in teaching a variety of subjects.

*L. Morecroft is nearly finished with a master's thesis that developed materials to

teach the physics concept of frames of reference and relative motion through the use of
Logo-implemented microworld. She is currently field testing the materials with high
school students.

*C. Humphreys has developed a Logo microworld and written materials to teach

children the elements of sailing. The work is in collaboration with a Boston Public
Schools project centering around the acquisition of a sailing ship for use by the school
system.

*E. Long has begun developing materials to teach signal processing to elementary

school students using some hardware developed by the Technical Education Research
Center. The hardware allows Apple microcomputers to perform such operations as
capturing, analyzing (e.g., Fourier transform), modifying and regenerating sound.

Cooperative Work with Arts and Media Technology: Several members of the
Educational Computing Group are cooperating with S. Papert's Learning and
Epistemology Group in the Arts and Media Technology Laboratory to develop sites in
the Boston Public Schools in which to experiment with high densities of computation.

70

EDUCATIONAL COMPUTING

The major thrust is a $1,000,000 effort sponsored by IBM called Project Headlight.
The basic idea of these efforts, aside from having an in-school lab site to develop and
test ideas, is to simulate the kind of computational resources, both in number and in
kind, that will become generally available with the declining cost of machines within the
next five years. Only in such environments can one experiment with a major overhaul
of the curriculum and style of teaching that technology portends.

Logo 84 and Logo 85: A major activity of the Group in terms of maintaining
contact with the growing Logo community is organizing an annual Logo conference at
MIT. The bibliography of the conference now shows about 160 books and over 700
articles published on Logo. The conference this year is expected to attract over 1000
people from all over the world.

4. COGNITIVE STUDIES

Other than the work done by Sylvia Weir in the project with dyslexic students at the
Carroll School, and a continuing concern for mental models of computation in the
Boxer, Bochser and Grasp Systems, there is one project in progress with major emphasis
on cognitive analysis. M. Kliman, a visiting graduate student from the University of
Edinburgh, is developing a knowledge map of elementary school students with respect
to the task of understanding weighing and balancing. The work is uncovering
remarkably rich structure and partial understandings and interventions that can be
made to help children along the road to a full understanding of that subject. Possible
future directions include automating the knowledge map and developing computer-
based materials such as a formal system (miniature expert system) in which children can
implement working models of balancing based on their current state of understanding.

71

FUNCTIONAL LANGUAGES
AND ARCHITECTURES

Academic Staff

Arvind, Group Leader R. Nikhil

Research Staff

R. Iannucci J. Pinkerton

Graduate Students

M. Beckerle G. Maa
S. Brobst G. Papadopoulos
A. Chien K. Pingali
D. Culler R. Soley
S. Heller K. Traub
R. Iannucei B. Vafa
V. Kathail

Undergraduate Students

G. Bromley F. Park
D. Clarke J. Sheffield
E. Hao J. K. Soon
F. Herrmann Y. M. Tan
R. Indech R. Wei
R. Katz J. Weisz
C. Lee C. Wong
D. Morais S. Younis
G. Ng

Support Staff

S.M. Hardy N.F. Tarbet

FUNCTIONAL LANGUAGES
AND ARCHITECTURES

Visitors

B. Blaner M. Mack
E. Hagersten N. Skoglund
D. Lowther

74

FUNCTIONAL LANGUAGES
AND ARCHITECTURES

1. INTRODUCTION

The Functional Languages and Architectures Group is pursuing two interrelated
projects, namely, the Tagged-Token Dataflow Machine and the Multiprocessor
Emulation Facility (MEF). The goal of the Tagged-Token Dataflow project is to
demonstrate the feasibility of general purpose parallel machines by simulation and
emulation. The goal of the MEF project is to construct a "sandbox" to facilitate
research and development in parallel architectures and languages. Following this
introduction, the report is divided into two major sections describing the ongoing
projects.

Our cooperation with IBM on both these projects has increased significantly over the
past year. Several joint meetings to discuss the technical details of the two projects were
held, and as a consequence of these meetings mid-course maneuvers were required. For
example, we have decided to switch to non-IBM technology for the packet
communication network for the MEF. On the dataflow project, the discussions resulted
in identification of two sub-goals which may be achieved by somewhat different
strategies. These sub-goals were (1) the demonstration of the scalability of the Dataflow
Machine, and (2) the investigation of a dataflow machine which will require the same
amount of hardware as a high performance sequential computer for the same level of
performance. Our immediate attention has been focused on the first sub-goal, and
consequently changes in the architecture or the compiler which are required only for the
demonstration of the second sub-goal, have been deferred.

A lively and productive IBM-MIT workshop was organized last April in Essex, CT, to
review multiprocessor research at the two institutions. We expect such interactions and
cooperation with IBM will continue at an even greater pace in the coming year.

1.1. Dataflow Project Overview

Since the success of parallel machines will depend on the effective programmability
and efficient utilization of resources, the dataflow project has been deeply concerned
with high level language support and resource management issues. We have been
experimenting with Id, a functional language, for a number of years and have finally
produced a documented version of the Id-to-dataflow graph compiler, which can be used
as a service program by us and other researchers. We have now entered what may be
called the second phase of development for both the language and the compiler. On the
language side, some ground work has been done to make polymorphic type-checking
and reference count garbage collection possible. A proper semantic view of I-structures,
the main data structure in Id, also seems to be emerging. Fortunately, this new view of
I-structures, even though fundamentally very important and novel, should have minimal
impact on the compiler. The compiler is being rewritten to improve its internal
modularity to make possible easy implementation of both anticipated and unanticipated
changes in Id. This new phase of language and compiler development is relying, much
more heavily than in the past, on the solid theoretical work that has been done at MIT
and elsewhere in the area of functional languages.

75

FUNCTIONAL LANGUAGES
AND ARCHITECTURES

We think that programmable and scalable machines should be such that a change in
machine configuration, e.g., changing the number of processors or memory modules,
interconnection topology, does not require the programmer either to rewrite or
recompile application programs. Thus, sophisticated runtime resource managers are
essential for the Dataflow Machine. We have made significant progress in efficiently
executing loop programs; however, further progress in this area is crucially tied to the
large scale simulation and emulation experiments. Our simulator, which runs on IBM
machines, is in the final stages of debugging and documentation, and should allow us
and IBM researchers to experiment with resource management policies in the near
future. Large scale emulation experiments will have to wait until the MEF is fully
functional.

1.2. MEF Overview

The past year has been one of continual upheaval for the Multiprocessor Emulation
Facility (MEF). We have endured one change of CPU, a major change in personnel,
several changes of technology, several changes of design strategy, and, most
importantly, two changes of name. Despite these changes, or perhaps because of them,
we have moved forward and will soon see first fruits. Spurred on by the arrival of
funds from DARPA, the Hardware Laboratory was completed and is now in use.

New CPU: At the beginning of this reporting period, we had planned to construct
the Emulation Facility out of Symbolics 3670 processors. We have subsequently
switched to Texas Instruments (TI) Explorers. The rationale for the change was based
partially on price, but predominantly on the open architecture of the Explorer coupled
with the fine cooperation we have received and expect to receive from Texas
Instruments. Currently, we have eight Symbolics Lisp Machines connected by Ethernet,
and two preproduction models of TI Explorers.

Personnel: During the previous reporting period, we had proposed a joint study with
IBM whereby they would provide design engineers to work at LCS on the packet switch.
The first three engineers have been with us for a year now and have made significant
contributions in the areas of high speed serial link protocol development / verification,
central switching mechanism design, creation of a library of very high performance
programmable logic array cells for custom VLSI, partitioning, packaging, and analysis
for the packet switch. In addition, they have researched the existence of standard parts
within IBM which will greatly simplify the design of this switch.

Technology: As an adjunct benefit of the Joint Study, IBM was to provide design
tools and manufacturing for the gate array logic used in the packet switch. Due to
confidentiality constraints, we have declined this offer of technology and have instead
negotiated for chip fabrication through LSI Logic Corporation.

Design Strategies: Prior to the switch-over to TI machines, we were designing two
different network cards for the 3670: the first was an adaptation of the BBN Butterfly's

76

FUNCTIONAL LANGUAGES
AND ARCHITECTURES

circuit switch. The second was a packet switch of our own design (both reported
previously). The TI machine is smaller than the Symbolics machine in many respects --
most importantly, the circuit cards are smaller and the potential for expansion (card
slots, power) is much more limiting. Consequently, we have re-partitioned the design
into three circuit cards: (1) a packet switching network adapter, (2) a circuit switching
network adapter, and (3) a NuBus channel adapter. The channel adapter, or NuCA,
provides direct-memory access between the NuBus and up to three network adapters
which may be circuit switches, packet switches, or a combination.

Name Changes: In that the design effort for the MEF is directed at interconnecting
an array of Lisp machines and that these machines have been named after trees, e.g.,
Cherry, Mahogany, Live-Oak, Netleaf-Hackberry, etc., a proposal was put before the
Group to name ourselves Project Tanglewood. The Boston Symphony, however, refused
to permit our use of the name. We had temporarily changed names, only to have to
revert to the old (and uninspiring) "MEF".

2. TAGGED-TOKEN DATAFLOW PROJECT

2.1. Compiler Progress

S. Heller and K. Traub have debugged and ported V. Kathail's original Id-to-Graph
Compiler to Lisp Machines. Now simply called the Id Compiler (Version 1), it has been
used successfully to compile several hundred programs since its release in January 1985.
The compiler output has been verified both by execution on the simulator and
emulator, and by detailed hand inspection. The largest program that this compiler has
processed is Simple, a 1200-line hydrodynamics program from Lawrence Livermore
Laboratory. Simple consists of 19 individual Id procedures, which in turn compile into
55 code blocks representing the procedures and the loops nested therein. The total size
of the compiled code is about 86,000 bytes of code for the Tagged Token Dataflow
Architecture (TTDA), representing over 10,000 dataflow operators. The current release
of the compiler implements bounded loop schema which was developed this year and is
discussed in Section 2.4

Coincident with the release of Version 1 of the Id Compiler was the publishing of the
ID Compiler Users's Manual, which contained the first definitive description of Id
syntax, as well as instructions for using the compiler. A revised and expanded version
of the user's manual has been published as CSG Memo 248.

The past year we have been increasingly aware of the need to adapt the Id Compiler
to changing requirements. We are now interested in particular in changing the basic
schema to incorporate new ideas about resource management, in changing the object
code generation to reflect the evolution of the TTDA, in optimizing code through
common subexpression elimination and code-block merging, in enhancing the language
with a deductive type-checking facility to permit efficient management of structures,

77

FUNCTIONAL LANGUAGES
AND ARCHITECTURES

and in performing a host of other compiler-related experiments. To meet these
requirements, we have begun work on Version 2 of the Id Compiler. The major design
goals of Version 2 are to:

*Provide a well-documented modular structure that allows the easy addition
and removal of compiler phases, such as type-checking or common
subexpression elimination. In this way, experimental compilation techniques
can be introduced at each step of the compilation procedure.

Make the major transformation phases of the compiler (parsing, abstract
graph generation, machine code graph generation, and assembly) as
specification- driven as possible. This allows easy modifications to syntax,
schema, and machine architecture without the need for detailed knowledge
of data structures and algorithms internal to the compiler.

We are now designing Version 2 and plan to complete it by June 1986.

2.2. Simulator Progress

The simulation facility has evolved into a solid testbed for the TTDA. The simulation
software has stabilized and we are proceeding with experiments aimed at enhancing our
understanding of the architectural tradeoffs to be made in the construction of a
dataflow multiprocessor. Experiments conducted by S. Brobst, D. Culler, and B. Vafa
have helped us to identify conditions under which the machine will deadlock,
bottlenecks in the execution pipeline of the processing elements, and the need for
controlling the amount of parallelism exploited during program execution. Programs
that we are currently running on the simulation facility include matrix manipulations,
the Livermore Kernels, and parts of the Simple Code developed at Lawrence Livermore
National Laboratory. The resource requirements within the TTDA necessary for
executing the partial-differential equation simulations implemented by the Simple Code
are a subject of current investigation.

In support of these simulation experiments, R. Wei, with the help of others, has built
a sophisticated user interface on top of the software implementation of the TTDA. This
interface allows complete configuration of a dataflow multiprocessor, including the
number of processing elements, relative speeds and technology of the hardware stages in
a PE, and resource management policies. Simulation experiments consist of both a
machine configuration and a specification of the source program to be executed. These
experiments can be run either in a remote batch mode via a simulation server on its
own virtual machine, or in a user's own virtual machine to facilitate interactive resource
management decisions, as well as debugging.

In addition, a suite of data collection and analysis tools have been developed by
R. Katz as a means for evaluating the performance of various implementations of our
dataflow multiprocessor. A database system specifically built for the simulation facility

78

FUNCTIONAL LANGUAGES
AND ARCHITECTURES

was put in place early last fall. The data collected includes performance profile
information, as well as a summary of all relevant benchmark characteristics of an
experimental run. A number of statistic-calculating packages are available for analyzing
this performance data. C. Wong has developed a facility for graphic output of
experimental data, and it is one of the most useful tools we have for providing insight
into the dynamic execution characteristics of the TTDA. Most recently, an interface
between Hewlett-Packard plotters and the IBM 4341 has been developed to facilitate
high-quality graphic representation of performance data.

S. Brobst, D. Culler and G. Maa are currently in the midst of a software engineering
effort to tighten up the interfaces between simulation modules, as well as to strengthen
the abstractions between the architectural, scheduling, and data collection components
of the simulator. This will be the last stage of our software development effort before
we release the simulation facility software to the IBM Research Center at Yorktown
Heights. In the near future, we will be upgrading the simulation hardware resources to
an IBM 4381 in an attempt to increase the performance of simulation experiments.

Most of our experimentation to date has been directed at verifying the simulator and
the code produced by the compiler. Some of the benchmarks we employed are
mentioned above. A variety of experiments were conducted to verify claims concerning
processor performance. For machine configurations of up to 16 PEs (the largest we are
currently able to simulate on the IBM 4341), good scalability was demonstrated. We
also observed that independent threads of computation interlace nicely within the
processor pipeline, as expected. Until the PE becomes fully utilized, additional threads
of computation can be processed with no increase in processing time. A number of
experiments were conducted to verify claims made by D. Culler on the resource
requirements of loops. We observed that (1) the resource requirements of loops do
increase essentially linearly with the amount of unfolding, (2) for simple inner loops
pipeline constraints serve to restrict the unfolding, (3) for loops that involve a
significant amount of parallel computation in each iteration, the unfolding is dramatic
and independent of the amount of parallelism the machine can exploit, (4) loops can be
constrained to achieve substantial reductions in resource usage without performance
degradation. For large programs, it appears necessary to constrain program unfolding
to keep the resource requirements within reason. We are currently modifying the
compiler and the simulator to support new graph schemata which allow parameterized.
This unfolding will allow us to study strategies for controlling dataflow programs in the
large.

2.3. Resource Management

Our recent work in resource management focuses on certain differences between the
U-interpreter and the TTDA. The model of computation embodied in the U-interpreter
is extremely powerful; it places minimal constraints on the execution order, and thereby
allows maximal parallelism. It imposes no resource constraints whatsoever; an

79

FUNCTIONAL LANGUAGES
AND ARCHITECTURES

unbounded number of activities may be performed concurrently, unbounded queueing of

tokens on the arcs is permitted, and activity names may grow, i.e., if a greedy schedule

is followed, programs unfold in accordance with whatever parallelism is present. The U-

interpreter also provides a convenient framework for reasoning about dataflow programs

and for proving properties of programs. In part, the ease with which the U-interpreter

lends itself to formal analysis stems from its rather idealized view of computational

resources. The U-interpreter also provides a convenient framework for reasoning about

dataflow programs and for proving properties of programs. The TTDA captures the

essential execution mechanism of the U-interpreter, allowing programs to unfold in

accordance with whatever parallelism is present in the program, but imposes rather

strict resource constraints; tokens must reside in the waiting-matching store, activity
names are represented by fixed-size tags, etc. D. Culler and B. Vafa have attempted to
overcome the differences between the model and the machine in regard to resources

through a mixture of techniques: program analysis to deduce the resource requirements
of sizable portions of dataflow programs, dynamic resource management to distribute
work over the machine without overcommitting individual resources, and program
transformation to make programs more suitable for execution on the TTDA.

Last year we reported on a dynamic resource management system, developed as part
of the simulation and emulation efforts. That system provides a means of distributing
work and data over the machine (using fairly straight-forward load-leveling techniques)

and takes care of allocating and deallocating all explicitly managed resources.
Deallocation of resources requires embellishing the program graphs to detect when
certain resources are no longer in use. Basically, this requires augmenting the graph for
each code-block with arcs so that a certain node is guaranteed to be the last activity in
the code-block.

The hardware allocates implicitly certain resources (notably, waiting-matching
storage) on demand. When a code-block is invoked, a certain collection of processing
elements are designated to perform the invocation. These processing elements must
provide storage for waiting tokens generated in the course of the invocation. The load
on the waiting-matching store is particularly crucial; if the matching store fills up and
the overflow is used, performance degrades considerably; if the overflow store fills up,
the program deadlocks. One of the motivations for developing the simulation and
emulation was to determine how large the waiting-matching store would have to be for
large programs t- run efficiently on the machine. It became clear that the resource
management system should not ignore the load on the waiting-matching stores when
distributing work over the machine. However, in order to account for the load placed
on the waiting-matching, the token storage requirements of code-blocks must be

determined in advance. As the token storage requirement depends on the order on
execution, it was necessary to deduce from the program graph the worst-case storage
requirement under all possible legal execution orders. The basic Idea is to model the
space of legal configurations as a linear program and to solve for the maximum number
of tokens on the arcs. For acyclic blocks without conditionals, this can be solved
efficiently. For blocks with conditionals, tight bounds are NP-complete, but

approximate bounds are easily computed with branch-and-bound techniques.

80

FUNCTIONAL LANGUAGES
AND ARCHITECTURES

Loops present another class of problems. One of the virtues of the U-interpreter and
the TTDA is that loops unfold automatically, exposing what parallelism is present.
Iterations are distinguished by an iteration number carried as part of the activity name
or tag. However, this automatic unfolding introduces certain complications. Since tags
are of fixed size in the TTDA, the iteration number field may overflow. Moreover, the
resource requirements of an activation (in particular, the token-storage requirements)
increase linearly with the number of concurrent iterations. To overcome these
difficulties, we desired a mechanism for controlling the extent of unfolding and
automatically recycling iteration numbers. The key result is that a loop has bounded
unfolding if and only if the graph forms a single connected component. Working from
this, D. Culler developed techniques for augmenting loop code-blocks so that the degree
of unfolding is controlled by a single run-time parameter.

Finally, we considered measures for constraining the automatic unfolding of programs
in order to reduce the resource requirements. A greedy scheduling strategy tends
toward breadth-first unfolding, which offers maximal parallelism, but has large resource
requirements. A depth-first strategy reduces the resource requirement, but also reduces
the amount of parallelism. Of the variety of techniques developed for controlling the
evaluation strategy, the most promising relies on the resource manager to queue
invocation requests when the machine is saturated with work.

2.4. Reduction Systems and Combinators

During the last year, we have continued our investigation of reduction systems and
combinators. In particular, K. Pingali has been examining the relationship between
supercombinators and dataflow. A supercombinator can be thought of as a closed
X-abstraction whose definition is of the form Xx.Xy Xw.e where e is a X-expression
without any nested X-abstractions. The number of leading X's in the definition of a
supercombinator is called the arity of the supercombinator. There are many
techniques, such as X-lifting and mfe-abstraction, for converting conventional
functional language programs into supercombinatory form, i.e., into a set of
supercombinator definitions and an expression involving supercombinator applications.

To evaluate supercombinator programs, the definitions of the supercombinators can be
used as rewrite rules -- any application of a supercombinator to as many arguments as
its arity can be replaced by the body of the supercombinator with the arguments
substituted in. This is a straightforward reduction implementation of supercombinators.
It was noticed by Johnsson that is possible to do better than this. Each supercombinator
definition can be compiled into code for a stack machine (or for that matter any
sequential machine), so that many intermediate steps of the reduction can be avoided
altogether. He calls this process "short-circuiting" graph reduction.

We have found that the essence of short-circuiting the reduction of a supercombinator
application is captured by converting the body of the supercombinator into
continuation-passing style. The code generated for the stack machine is an

81

FUNCTIONAL LANGUAGES
AND ARChU]TECTURES

implementation of this transformed program. This view of short-circuiting has two
advantages. First, it relates the work done by Johnsson to the work done by Sussman
and Steele, Wand and others on compiling Scheme-like languages. Second, it is easy to
extend this idea to parallel implementations of functional languages. We are currently
trying to understand dataflow implementations in this light. If successful, this will
permit us to relate dataflow to reduction.

3. MULTIPROCESSOR EMULATION FACILITY PROJECT

3.1. The Hardware Laboratory

During the previous reporting period, R. Iannucci, J. Pinkerton, G. Papadopoulos and
others put together the plan for a new MEF Hardware Laboratory (Tanglewood Design
Note 4). This year we saw the dream come to life in the form of a 600 sq. ft. room on
the second floor which now provides:

" Two AED 767 color VLSI layout stations running CAESAR, HPEDIT, and
(soon) MAGIC, interfaced to a Hewlett-Packard 8 pen plotter.

" Two Apollo design workstations for schematic capture, simulation, timing
verification, and component placement. We are also adding a 500 MB file
server to our Apollo ring network.

" A drafting table (when all the fancy electronic stuff fails).

" Four fully instrumented logic design / debug stations, each with an
oscilloscope, a logic analyzer, function generator, counter, digital multimeter,
programmable power supplies, an instrumentation computer, and a full set
of hand tools. In addition, we have a high performance digitizer and a time
domain reflectometer.

" A stockroom.

" A VLSI microprobe station.

We also recently learned that our request for a grant of $200,000 worth of additional
Apollo workstation hardware has been approved; we will take delivery on the equipment
before the end of the summer.

3.2. Packet Switch

B. Blaner, M. Mack, and D. Lowther joined the MEF team from IBM during the
summer of 1984. During the last year, they have made noteworthy progress on the
development of the packet switch. Major accomplishments include

82

FUNCTIONAL LANGUAGES
AND ARCHITECTURES

*Development of a protocol for the high speed serial links of the switch,
which is an improvement over the echo-acknowledge protocol previously
reported: Blaner's contributions here are very significant; he will be
continuing his work on protocol verification over the next few months.

* Development of the central switching mechanism for the packet switch card:
Mack's high-level and detailed designs are sufficiently far along that we
expect to release a chip description to the mai,-.facturer by the end of the
summer. The result will be an 8-in, 8-out, 4-bit-wide crossbar on a single
84-pin chip. Performance will far exceed the requirements of the packet
switch.

" Partitioning of the card's function down to the chip level: The partitioning
is such that the high-speed serial logic is entirely modular and is separate
from the central switch. This makes it conceivable to design both smaller
and larger packet switches which are protocol compatible with the existing
design; such redesigns would be nearly trivial. This opens the possibility of
using the serial link as a building block for many other applications, e.g.,
dataflow processor cards, backbone local area networks. We expect to have
a working link in prototype form by early Fall 1985, with the cMOS version
to follow in the second quarter of 1986.

" Selection of our target technology: We are currently planning on using LSI
Logic's LL7600 series and LL5220 series for the high speed serial logic and
the central switch, respectively. We will also be using several components
available through IBM to make the design task simpler.

" Design of a set of very high performance PLA cells for custom VLSI: We
have just received our first test chip from MOSIS. Measurements will be
taken within a month.

Performance of the switch is dominated by two major factors: the speed of the serial
links (target is 32 Mbits/sec) and the latency of allocating a path through each switch
upon the arrival of the head of a message. The switch is optimized for high-traffic
message-passing communication where total throughput is more important than per-
message latency. We are currently re-investigating design enhancements that will
noticeably improve our ability also to support a remote memory reference model of
communication, i.e., shorter messages, with round-trip delay more important than total
message throughput.

During the next year, the packet switch team will continue to grow. It is likely that
we will have our first prototype card by summer of '86; we expect to be running packet
switch / NuCA test shortly thereafter. Between now and then, a significant amount of
effort will be required to implement the necessary NuCA microcode, Explorer
microcode, and LISP code to make efficient data transfer accessible from Lisp.

83

FUNCTIONAL LANGUAGES
AND ARCHITECTURES

3.3. Circuit Switch and NuCA

We have adapted the BBN Butterfly circuit switching network as an interim

communications medium until the packet switch becomes available. The primary

contributors to this effort have been G. Papadopoulos, G. Bromley, C. Lee, and

F. Park. The BBN switch node is a 4x4 4-bit serial, globally synchronous crossbar. The

raw bandwidth of each link is three megabytes per second, and a maximum utilization

of 20% of this raw rate is expected. This yields an aggregate useful bandwidth of over

one gigabit per second for a 32-processor configuration.

We have added error detection, noise immunity, and electrical isolation to make the

BBN switch more suitable for a higher integrity and more physically dispersed

multiprocessor. The circuit switch can be attached directly to the TI NuBus, controlled
by Lisp or Explorer microcode. In addition, S. Younis has engineered a high precision

distribution network designed to deliver the globally synchronous six megahertz clock to

64 TI Explorers, within a 25 nanosecond maximum skew.

To off-load the Lisp processor from low level message formatting and protocol, we are
developing a microcoded I/O processor, the NuBus Channel Adapter, or NuCA.
G. Papadopoulos, E. Hagersten and N. Skoglund (the latter two on loan from Ellemtel,
Sweden) have developed the NuCA. The NuCA provides an intelligent DMA interface
between the NuBus and a local bus. The local bus is a simplified byte-wide block
oriented bus consisting of an input and output link, each capable of delivering or
receiving 10 megabytes per second, and an asynchronous Spy bus for diagnostics, error
recovery, and configuration. The NuCA will support both the circuit and packet
switches simultaneously. Internally, the NuCA provides two 5 Mips 64-bit
micromachines, 4096 bytes of high speed FIFO buffering, 64K bytes of scratch pad
memory, in addition to an autonomous, multiported NuBus master interface capable of
four-way request interleaving and burst transfers without Lisp processor intervention.

In Fall 1984, we demonstrated a re-engineered circuit switch prototype for the
Symbolics 3600. The circuit switch in its standalone NuBus configuration should enter
production by Fall 1985, becoming available to MEF users during the first quarter of
1086. A NuCA prototype should be operational by the first quarter of 1986.

3.4. MEF Software

The MEF software development in progress is comprised of three parts, (1) generic
software for emulating multiprocessor architectures on the MEF, (2) the software for the
TTDA experiment, and (3) a general-purpose text illustration program called
ILLUSTRATE.

Generic Software -- Early in the year, we found that the low speed of the dataflow
emulation (less than 100 dataflow instructions per second per processor) was at least
partially due to design decisions taken in the MEF generic architecture emulation code.

84

FUNCTIONAL LANGUAGES
AND ARCHITECTURES

R. Soley (the original author), M. Beckerle, and D. Morais did some to speed tuning up
this substrate. Due to these efforts, we are now emulating dataflow instructions at the
rate of about 500 instructions per second per processor. Scaling of this speed by
increasing the number of processors, however, is severely bandwidth-limited by the
current interconnection hardware (10 Megabit ethernet running Chaos and TCP
protocols).

In order to support stepped-up use of the MEF substrate software at MIT and
elsewhere, R. Soley's thesis covering the theory and practice of its use is now available
for distribution. LCS/ TR-339 describes the basic abstractions of the MEF software, as
well as extensions and examples of its use. Among our future plans are the upgrading
of the MEF substrate software for more speed, support of the Texas Instruments
implementation language for portability, and support of the NuCA network interface.
This work will be performed over the next six months by R. Soley.

Dataflow Emulation Experiment -- In Spring 1985, we decided to halt work
temporarily on the dataflow emulation software. First, we knew that the upcoming
switch to the TI Lisp Machines from the Symbolics machines would require some
changes to the software. Since the dataflow emulation software is in need of some
major revisions, it seemed best to wait until the new software environment was
available before undertaking major changes.

In addition, within the next few months there are two sources for potential
modifications to the architecture. At meetings with researchers from I.B.M., we formed
a committee to simplify the instruction set for the architecture. Also, with the simulator
now producing real results, we felt that the simulation experiments might lead to some
design changes for the architecture. Therefore, rather than completing the emulator for
the current architecture, it seemed more practical to wait for a new specification, and in
the mean time, to concentrate on learning as much as possible from simulation
experiments.

The ILLUSTRATE Program -- During the past year, work has continued on the
ILLUSTRATE graphical illustrate program. D. Morais, the original author, carried out
most of it, with the assistance of D. Clarke and R. Soley.

ILLUSTRATE is a highly interactive object-oriented graphical illustration program,
designed primarily for adding illustrations to theses, reports, books, etc. Built originally
around the Alto Draw concepts, design ideas have been added by many members of the
group. Running on the Symbolics 3600 Lisp Machine processor, Illustrate is becoming
quite popular at MIT and other sites around the country. Over the next year, Illustrate
will also be ported to the TI Explorer processor.

85

FUNCTIONAL LANGUAGES
AND ARCHITECTURES

References

1. Cardelli, L. "ML Under Unix," Technical Report, AT&T Bell Laboratories,
Murray Hill, NJ, 1983.

2. Culler, D.E. "Resource Management for the Tagged-Token Dataflow
Architecture," S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, January 1985.

3. Milner, R. "A Theory of Type Polymorphism in Programming," J Comp &
Sys Sci, 17, (1978), 348-75.

4. Mohamed-Ali, KA. "Distributed Garbage Collection Algorithms for a
Loosely-Coupled Multiprocessor System," CSALAB Working Paper
1983-03-09, Royal Institute of Technology, Stockholm, Sweden, 1983, 51.

Publications

1. Arvind and Culler, D. E. "Final Report: Program Decomposition for
Multiple Processor Machines," CSG Memo 244, MIT Laboratory for
Computer Science, Cambridge, MA, December 1984.

2. Brobst, S. A. "Tagged-Token Dataflow Architecture Simulation Facility
User's Manual," CSG Memo 250, MIT Laboratory for Computer Science,
Cambridge, MA, March 1985.

3. Culler, D.E. "Resource Management for the Tagged-Token Dataflow
Architecture," MIT/LCS/TR-332, MIT Laboratory for Computer Science,
Cambridge, MA, January 1985.

4. Heller, S. and Traub, K. "Id Compiler User's Manual," CSG Memo 248,
MIT Laboratory for Computer Science, Cambridge, MA, May 1985.

5. Pingali, K. and Arvind "Efficient Demand-Driven Evaluation (I)," TOPLAS,
May 1985.

6. Soley, R. M. "A Third Opinion on Dataflow Machines and Languages," CSG
Memo 241, MIT Laboratory for Computer Science, Cambridge, MA, October
1984.

7. Soley, R.M. "Generic Software for Emulating Multiprocessor Architectures,"
MIT/LCS/TR-339, MIT Laboratory for Computer Science, Cambridge, MA,
June 1985.

8. Traub, K. "An Abstract Architecture for Parallel Graph Reduction,"

86

FUNCTIONAL LANGUAGES
AND ARCHITECTURES

MIT/LCS/TR-317, MIT Laboratory for Computer Science, Cambridge, MA,
June 1984.

Theses Completed

1. Bacon, S. "A Supercombinator Compiler for Scheme," S.B. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge,
MA, May 1985.

2. Bromley, G. "Waiting/Matching for Tagged-Token Dataflow Architectures,"
S.B. Thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1985.

3. Culler, D. E. "Resource Management for the Tagged-Token Dataflow
Architecture," S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, January 1985.

4. Ng, G. W. "A C-Language Instrument Control Function Laboratory," S.B.
Thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1985.

5. Soley, R. M. "Generic Software for the Emulation of Multiprocessor
Architectures," S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, May 1985.

6. Vafa, B. "A Resource Management Policy for the Tagged-Token Data Flow
Machine," S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, May 1985.

7. Wei, R. C-S. "The Design of An User Interface Facility for the Tagged-
Token Dataflow Architecture Simulator," S.B. Thesis, MIT Department of
Electrical Engineering and Computer Science, Cambridge, MA, May 1985.

8. Weisz, J. "A Hardware Description Translation System," S.B. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge,
MA, May 1985.

Theses in Progress

1. Beckerle, M. J. "Logical Structures for Functional Languages," M.S. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected December 1985.

2. Brobst, S. A. "Token Storage Requirements in a Dataflow Supercomputer,"
S.M. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected December 1985.

87

FUNCTIONAL LANGUAGES
AND ARCHITECTURES

3. Hughes, G. "Wavefront Synchronism," S.M. thesis, MIT Department of
Electrical Engineering and Computer Science, Cambridge, MA, expected
January 1986.

4. Pinkerton, J. "A High-Speed Serial Link Optimized for Packet Switching,"
S.B. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected May 1085.

5. Pingali, K. "Design and Implementation of Dataflow Languages with
Streams," Ph.D. dissertation, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected January 1986.

Talks

1. Arvind. A series of four lectures on "Computer Architecture" at DEC,
Shrewsbury, MA, September and October 1984.

2. Arvind. "Why Dataflow Architectures?" Honeywell Symposium,
Minneapolis, MN, September 1984.

3. Arvind. "Why Dataflow Architectures?" IBM-Poughkeepsie 40th
Anniversary Symposium, Kutsher's Country Club, NY, November 1984.

4. Arvind. "Fundamental Issues in the Design of Multiprocessor Systems,"
ElectroTechnical Laboratory, Tsukuba, Japan, November 1984.

5. Arvind. "The MIT Tagged-Token Dataflow Machine: Current Status,"
ElectroTechnical Laboratory, Tsukuba, Japan, November 1984.

6. Arvind. "Why Dataflow Architectures?" University of Minnesota,
Minneapolis, MN, January 1985.

7. Arvind. "Dataflow Experiments on the Multiprocessor Emulation Facility,"
MIT Laboratory For Computer Science, Cambridge, MA, February 1985.

8. Arvind. "The Goal of the Tagged-Token Dataflow Project," IBM-MIT
Workshop, Essex, CT, April 1985.

9. Arvind. "Why Dataflow Architectures?" MIT Department of Aerodynamics
and Astrophysics, Cambridge, MA, April 1985.

10. Arvind. "Why Dataflow Architectures?" University of Massachusetts,
Amherst, MA, May 1985.

11. Brobst, S.A. "Waiting-Matching Requirements of the Tagged-Token

88

FUNCTIONAL LANGUAGES

AND ARCITECTURES

Dataflow Dataflow Architecture," Harris Corporation, Advanced Technology
Division, Melbourne, FL, January 1985.

12. Brobst, S.A. "Application Domain of the Tagged-Token Dataflow
Architecture," Harris Corporation, Advanced Technology Division,
Melbourne, FL, January 1985.

13. Brobst, S.A. "The Next Generation of High Performance Computer
Systems," MIT Sloan School of Management, Cambridge, MA, February
1985.

14. Brobst, S.A. "Performance Evaluation of the Tagged-Token Dataflow
Architecture," Workshop on Performance Evaluation of High-speed
Computers, Institute for Computer Sciences and Technology, National
Bureau of Standards, Gaithersburg, MD, June 1985.

15. Culler, D. E. "Overcoming Latency in Parallel Computer Systems,"
Lawrence-Livermore Laboratory, Livermore, CA, July 1984.

16. Culler, D.E. Experience with Tagged-Token Dataflow Architecture
Simulator," Essex, CT, MIT /IBM Workshop on Multiprocessors, May 1985.

17. lannucci, R. A. "The MIT Multiprocessor Emulation Facility," MIT Summer
Dataflow Course (6.83s), Cambridge, MA, August 1984.

18. Iannucci, R.A. "The MIT Multiprocessor Emulation Facility," IBM
Glendale, Endicott, NY, December 1984.

19. Iannucci, R.A. "High Speed Packet Communication," IBM Burlington,
Burlington, VT, January 1985.

20. Iannucci, R. A. "High Speed Point-to-Point Serial Data Communication,"
IBM Raleigh, Raleigh, NC, February 1985.

21. Iannucci, R.A. "Dr. Strangehost (or How I stopped worrying and learned to
love CMS)," MIT Laboratory for Computer Science, Cambridge, MA, May
1985.

22. Heller, S. "Automatic Storage Reclamation," Boston University, Boston,
MA, August 1984.

23. Nikhil, R.S. "Functional Databases, Functional Languages," Microelectronics
and Computer Technology Center, Austin, TX, June 1985.

89

FUNCTIONAL LANGUAGES
AND ARCHITECTURES

24. Nikhil, R.S. "Functional Databases, Functional Languages ," University of
Texas, Austin, TX, June 1985.

25. Papadopoulos, G. "The MEF: A Multiprocessor Sandbox," with R.M. Soley,
MIT Laboratory for Computer Science, Cambridge, MA, February 1985.

26. Papadopoulos, G. The Multiprocessor Emulation Facility," with R.A.
Iannucci, MIT Summer Dataflow Course (6.83s), Cambridge, MA, August
1984.

27. Pingali, K. "Sharing of Computations in Functional Language
Implementations," Workshop on Functional Language Implementations,
Goteborg, Sweden, February 1085.

28. Pingali, K. "Sequential Implementations of Functional Languages," Royal
Institute of Technology, Stockholm, Sweden, February 1985.

29. Soley, R. M. "The MEF: A Multiprocessor Sandbox," with Gregory
Papadopoulos, MIT Laboratory for Computer Science, August 1084.

30. Traub, K. "An Abstract Parallel Graph Reduction Machine," International
Symposium on Computer Architectures, Boston, MA, June 1985.

g0

IMAGINATIVE SYSTEMS

Academic Staff

D. Gifford, Group Leader

Research Staff

S. Berlin

Graduate Students

R. Baldwin D. Rosenblitt
D. Carnese R. Schooler
C. Chiang J. Stamos
J. Lucassen

Undergraduate Students

H. P. Brondmo R. Hyre
R. Dreyer J. LaRocca
B. Gunther J. Yoon

Support Staff

R. Bisbee

IMAGINATIVE SYSTEMS

1. INTRODUCTION

The Imaginative Systems Group has expanded its work on the Boston Community
Information System over the past year. The Boston Community Information System is
a prototype of a large scale information system, and has been used by our research
group to explore research issues in databases, packet radio communication, user
interfaces, and operating systems. Highlights of our accomplishments in the past year
include (1) the enhancement of our information sources, including the addition of the
Associated Press and Internet bulletin boards, (2) work on fundamental database theory
that will allow us to automatically route queries to appropriate databases, (3) the design
of a new inexpensive receiver that can receive our digital transmissions, (4) the
enhancement of our personal database system that allows it to access our database
servers via two way communication in addition to its basic function of gathering
broadcast data, and (5) publication of our research results. The first section of this
chapter expands on these accomplishments and outlines our plans for the coming year.

Another activity that our research group has in progress is in the area of programming
languages. This effort has examined the thesis that it is possible to simplify existing
programming languages by allowing features normally implemented by built-in types to
be supplied by library packages. The second section of this chapter discusses this
activity in detail.

2. THE BOSTON COMMUNITY INFORMATION SYSTEM

The goal of the research reported here is to use computers to improve communication
between people. Our view is that the computer is an excellent communication medium
because of its ability to process, index, edit, and display information, and that this
capability can be well applied on a large scale to communication within a community.
However, building a computer system large enough to serve a community is a difficult
problem. Our major design goals were the following: we wanted the system to

" economically serve a major metropolitan user community,

" provi le a high-quality user interface,

" give its users access to a wide variety and a large volume of information,

" allow its users to add value to the information provided by the system by
specifying filtering and further processing,

" safeguard the privacy of users,

" be easily extensible to new services.

Our design seeks to address these goals by combining personal computation and

92

IMAGINATIVE SYSTEMS

communication. A personal computer is located at every user site. Information is
Lransiitted to these personal computers via broadcast communication. Thc personal
computers retain information of interest to their owners and provide a personalized
information service. Because each user station has local processing and storage
capability, the user can gain effective access to much more data than in a Teletex
system without resort to the central, per-user processing required for Viewdata.

The approach of sending information to the user's location and processing it there has
a number of advantages. First, the central site can support any number of broadcast
service users. Second, locating processing power with the user allows for a high-quality
user interface. Third, local processing and storage can be used to assist the user in
managing a larger volume of available information. Fourth, the user can choose how to
add value to information, integrating received information with local computational
tools and data bases. Fifth, the local processing of information keeps private
information confined to the user's site. Finally, because the personal computers are
fully programmable, the system is easily extensible to new services.

2.1. Broadcast Packet Radio System

In the past year we continued operating our digital broadcast system on WVMBR-FM
in Boston, and added a second transmitting site on WERS-FM. The second
transmitting site provides us with a larger coverage area, and thus future installations
of our system will use receivers tuned to this transmitter. As part of our effort to bring
up a second transmitting site we worked with an outside contractor to develop a low
cost receiver. The receiver, including all of its components, is available retail for under
$100.

Both of our transmitting sites use the three-layer protocol we have developed for
unidirectional byte channels characterized by burst errors. The three layers of the
protocol and their respective functions are shown in Table 7-1. The protocol has a low

implementation complexity, and is efficient enough to permit continuous error detection
and correction at 4.8 KBits/sec on a personal computer without any special-purpose
hardware, using only a fraction of the available CPU power.

The first and lowest layer of our protocol is the byte string layer. A byte string is
defined as a finite sequence of arbitrary bytes. There is no guarantee that a byte string
is delivered to the receiving sites or that it is delivered without errors, but all byte
strings that are delivered are guaranteed to arrive in the order in which they were
transmitted.

The byte string layer is implemented directly on top of the byte channel, and the end
of each string and the beginning of the next is indicated by one or more bytes serving as
separator tokens. Since the contents of the byte string can be arbitrary, any instances
of the separator token in the byte string itself are mapped into other values by means of
byte-stuffing.

93

IMAGINATIVE SYSTEMS

The packet layer of the protocol is implemented on top of the byte string layer. It
provides for transmission of packets of arbitrary contents, up to a certain length. (In
our implementation, the length in bytes must be a multiple of four not exceeding
4*255). The packet layer serves as an error detection layer: there is no guarantee that
Individual packets are delivered, but all packets that are delivered are guaranteed to be
complete, free of errors, and in order. To accomplish this, the packet layer transmits
each packet as a byte string, prefixing it with a length field and a checksum.

If the length field of a received packet does not match the actual length of the
received byte string, the packet is rejected. Otherwise, the checksum is computed. If
the checksum does not match, the packet is also rejected. Otherwise, the packet is
accepted.

Note that the guarantee of error-free transmission is merely probabilistic: if a packet
has been corrupted, it will nevertheless be accepted if the length field and the checksum
both match. With a 32-bit checksum, an error can go undetected with a likelihood of
no less than 2-32.

The data layer of the protocol is implemented on top of the packet layer. It provides
for the transmission of data blocks of arbitrary contents, up to an implementation
dependent length. The data layer serves as an error correction layer: although it
provides the same guarantees as the packet layer (delivered data blocks are complete,
free of errors, and in order), it has the potential for greater useful throughput when
channel errors are likely to occur.

For transmission, each data block is divided into a number of fixed-size packets. (The
last packet may be shorter than the others if the block length is not an even multiple of
the packet length). The fragmentation is performed subject to the length constraint on
packets and the implementation-defined limit (currently 100) on the maximum number
of packets.

Recall that the underlying packet layer does not guarantee that individual packets are
delivered. To increase the likelihood that a packet is delivered intact, it may be
transmitted more than once. Because the physical channel exhibits burst errors (and no
apparent periodicity), we create time diversity by interleaving these redundant
transmissions: all the packets of the data block are transmitted once, and then this
sequence is repeated as many times as is necessary to achieve the desired expected level
of reliability.

The data layer appends a header containing reassembly information to each packet as
shown in Figure 7-1. The header format is as follows:

4 bytes checksum (part of the packet layer)
1 byte length of packet in 4-byte words

(part of the packet layer)

94

IMAGINATIVE SYSTEMS

1 byte reserved to specify the protocol that is used
1 byte sequence number of the data block (mod 256)
1 byte reserved for future use

2 bytes packet number (within the data block). The high-order
bit indicates whether this is the highest-numbered
packet of the data block.

Using this information, data blocks can be straightforwardly assembled as follows.
Since packets are guaranteed not to be delivered out of order, and cannot contain
erroneous data, the arrival of a packet with a data block serial number different from
that of the previous packet signals the start of a new data block. The bit-vector that
records which packets of the data block have been received is initialized to all zeroes,
and the expected number of packets (for the new data block) is initialized to
"unknown".

For each packet that arrives, this bit vector is consulted. If the packet contents is
already present, the packet is ignored and the system waits for the next packet.
Otherwise, the packet contents is copied into the data buffer, starting at a location
determined by the packet length and the packet number, and its presence is noted in
the bit vector. If the packet is tagged as the highest-numbered packet of the data
block, the expected number of packets is filled in. Each time a packet is copied into the
data buffer, the bit-vector and the expected number of packets are examined to
determine whether a complete data block has been received.

Whenever a complete data block is received it is handed over for further processing.
In our system, this processing is performed in place, so control is not returned to the
data layer until all processing has been completed. This may include decrypting the
data block, scanning it to see if it matches the user's filter, and possibly saving the
contents on disk. When the data layer regains control, it directs its attention to the
incoming packet stream, and is ready to assemble the next data block.

Note that the correctness guarantee on data blocks is once again a probabilistic one: if
any packet has been undetectably corrupted, the data block of which it is part may
reflect the error, either directly or indirectly through incorrect assembly. Moreover, the
one-byte data block serial number does not allow detection of transmission outages that
last 255 data blocks (mod 256). Such outages must be detected by a timeout
mechanism.

The digital broadcast system that we operate in Boston uses an FM Subsidiary
Communications Authority (SCA) channel. SCA channels are subcarriers that can be
used by an FM radio station without interfering with normal broadcasting. Typical
uses of SCA channels include Muzak, stock quote services, and reading for the blind.

05

IMAGINATIVE SYSTEMS

In our application the SCAs of WMvBR-FM and WERS-FM are modulated with a

frequency shift keyed signal (FSK) that carries RS-232 compatible asynchronous data at

4.8 KBits per second. An FSK system that uses asynchronous signalling is particularly

simple to demodulate and to interface to existing serial ports on personal computers: the

cost of the receiving equipment (not including the personal computer) is under $100 pet

receiver.

The SCA channel transports a byte stream to our users. The time-average byte error

rate of the channel varies, depending on the receiver configuration (the type of antenna

and receiver circuit employed) and receiving conditions (distance between transmitter

and receiver, multipath interference, interference from appliances, weather). The time-

average byte error rate is given below for several receiver sites.

Currently, the transmission rate of our broadcast subsystem is limited to 4.8

Kbits/sec. This is not a limiting factor, since a typical personal computer can just

accommodate continuous 4.8 Kbits/sec transmissions.

We will now describe the procedure used to determine appropriate values for the

packet size and the number of repetitions to be employed by the data layer of the

protocol. The parameters of the underlying byte channel, such as the transmission rate
and the byte format, are presumed to be fixed and are not considered here.

The first step of the process is to determine what objective function (of the
parameters in question) we wish to maximize. We have considered the following
functions in particular:

" The packet-level throughput rate: this is the ratio between the number of
data bytes in a packet and the total packet size, times the probability that a
packet arrives intact.

" The block-level throughput rate: this is the ratio between the number of

data bytes in a data block and the total number of bytes it takes to transmit
the data block, times the probability that the data block arrives intact. We
will refer to this quantity as the channel utilization.

" The block delivery probability: this is the likelihood that a transmitted data
block arrives intact.

The packet-level throughput rate would make a poor objective function, because it

reflects neither the number of repetitions nor the effects of the block size.

The block-level throughput rate, or channel utilization, makes a much better objective
function. In fact, if a fixed set of data blocks is transmitted repeatedly in round-robin

fashion, and block delivery errors are statistically independent, we can minimize the

mean latency from the time a data block is first transmitted until the time it is first
correctly delivered by maximizing the channel utilization. Channel utilization will be

our primary objective function.

90

IMAGINATIVE SYSTEMS

The block delivery probability always approaches unity as the number of repetitions is
increased. Therefore, it is not a useful objective function for choosing parameter values.
It is nevertheless a useful quantity, and we monitor it to avoid wasteful use of the
channel.

To calculate the channel utilization and the block delivery probability for a particular
channel, we begin by estimating the packet error rate of the byte channel for various
packet sizes. We define a k-burst (of errors) as a maximal-length sequence of bytes
terminated by bytes transmitted incorrectly that does not contain a subsequence of k
error-free bytes.

Figure 7-4 shows the distribution of error burst lengths observed on our noisy channel
for k=5, along with the distribution that would be expected if byte errors were
statistically independent, with the same byte error rate. The plateau in the expected
distribution is an artifact corresponding to the definition of burst errors, but is
nevertheless expected in the actual data. Instead, the observed distribution has a
secondary peak at a burst length of 4 or 5, and has a much higher tail than the
expected distribution. Therefore, we conclude that byte errors on the channel are not
independently distributed, and that we cannot calculate packet error rates directly from
the byte error rate of the channel.

Instead, we estimate packet error rates by means of a data collection program that
maps the observed sequence of byte errors into (simulated) continuous packet streams of
various packet sizes. We have run this program at several receiver sites, analyzing one
megabyte of received data at each site. The number of byte errors varied from 4870 (in
a windowless, partially shielded, electrically noisy room near the transmitter) to 55 (in
the suburbs 7.4 miles west of the transmitter), to 12 (7.5 miles north). A fourth test
site, located 9.8 miles southeast of the transmitter, proved to have such poor reception
that we cannot deliver data blocks to that site reliably.

The relationship between packet size and packet error rate is determined by the
extent to which byte errors are clustered. This dependence is best illustrated by our
noisiest set of observations Table 7-2 shows the observed packet error rate as a function
as packet size. For comparison, we have included estimated packet error rates based on
the (erroneous) assumption that byte errors are independent with a byte error rate of
4870 errors per 1M bytes. It is clear from the table that byte errors are not
independent, and that assuming independence would lead one to consistently
overestimate the packet error rate. This confirms our earlier conclusion based on the
distribution of error burst lengths.

The observed relationship between packet size and packet error rate indicates that
even packet-level errors are not independently distributed over the time span
investigated, up to 16K bytes. (This can be illustrated by comparing the delivery
probability of two 1K packets, (1-0.415)2=0.342, with the delivery probability of one
2K packet (1-0.570)=0.430. Since a 2K packet can be viewed as two adjacent 1K

97

IMAGINATIVE SYSTEMS

packets, we find that the delivery probability of two adjacent 1K packets is greater
than the delivery probability of two independently chosen 1K packets. Thus, packet
errors are not independent).

Because packet errors on the channel are not independently distributed, we cannot
calculate the block delivery probability directly from the packet error rate of the
channel. We could proceed as before, and estimate the block delivery probability by
mapping the observed sequence of packet errors into a (simulated) continuous stream of
data blocks. However, to obtain accurate estimates in this way, we would need data
collection runs lasting several orders of magnitude longer than those used to estimate
the packet error rates.

Therefore, we are forced to estimate the block delivery probability directly from the
packet error rates anyway, as a function of the block size, the packet size, and the
number of repetitions. We have made these calculations using the channel model
described below.

The channel model we have developed is used to choose suitable parameter values for
the data level protocol. The model is based on the assumption that packet errors are
independent. To the extent that this is not true, our reliance on average values at the
packet level tends to produce an over-estimate of the error rates at the data block level,
especially for small packet sizes and high repetition rates.

Let us call the block size N, the packet size n, the number of packets per data block
k, and the number of repetitions r. Assume that the probability of packet error, p(n), is
given for all packet sizes of interest. Assume further that each packet contains a header
of H bytes, leaving room for (n-H) bytes of data. We will use H=10 throughout.

The number of packets per data block (not counting repetitions) is:
k = -N/(n-H)1

When the block size is not an exact multiple of the packet size, the last packet may be
shorter than the rest. Because the packet error rate as a function of packet size is well-
behaved, we can account for this by using a non-integer approximation of the number
of packets per data block, namely the total number of bytes transmitted per repetition
of the data block divided by the packet size:

N + H * [1/(n-H)1
k"=

n

The potential channel utilization (which is achieved when there are no errors) is the
ratio between the block size and the total number of bytes transmitted to get each data
block across:

N

r * N N + H * Nl/(n-H))

98

IMAGINATIVE SYSTEMS

If each packet of a block is transmitted r times, the probability that all r copies of a
given packet are damaged or lost in transmission is p(n)r (assuming independence of
individual packet errors). Thus, the probability that at least one copy of a packet
arrives intact (which is all that is needed) is 1-p(n)r. If a block is fragmented into k'
packets (not counting repetitions), then the block delivery probability is equal to the
probability that all k' packets can be reconstructed, or (1-p(n)r)k'.

The channel utilization is the product of the potential channel utilization and the
block delivery probability:

N * (1 -p(n)r)k
"

channel utilization =

r * (N + H*rN/(n-H)l)

Note that H is fixed, N is fixed for each block, N and n together determine k', and the
function p(n) is fixed given the receiver site. Thus, we can now maximize channel
utilization over all possible values of n and r, subject to the restriction that p(n) is
known only for selected values of n.

Table 7-3 gives the combinations of packet size and number of repetitions that
maximize the channel utilization for selected block sizes, for the high-error channel
mentioned before. Packet sizes of successive powers of two were considered, up to 1024
bytes or the block size (whichever was less). Suboptimal parameter choices, included for
comparison, are indicated with (<). Note again that this channel does not reflect
realistic receiving conditions, which are up to three orders of magnitude better.

In this table, we can distinguish three different operating regions, namely those with
optimal repetition rates of 1, 2 and 3.

For very small data blocks, it does not pay to retransmit packets more than once
because the error rate on single transmission is so low that a channel utilization greater
than 0.5 can be achieved, which is not possible when each packet is transmitted more
than once. For such small data blocks, the largest possible packet size is always
optimal.

Next, there is a crossover region where r=2 is optimal. Somewhere within this region,
it pays to reduce the packet size from 128 bytes to 64 bytes, as indicated. The model
does not allow for accurate comparisons between error rates obtained with and without
retransmission, so it is hard to determine the precise block size at which retransmission
becomes worthwhile.

Next, for block sizes of 4K and up, the model yields a remarkably stable optimum

with r=-3 throughout our range of measurement. The model indicates that throughout
our range of actual block sizes (4K to 10K), a packet size of 128 bytes is optimal. For
very large blocks, the packet size should be reduced to 64 bytes.

go

IMAGINATWE SYSTEMS

Table 7-4 shows how the block delivery probability and the channel utilization vary
with the packet size and the number of repetitions for a given block size (4K bytes).
Note that for r=1, there is no error correction and therefore channel utilization is
maximized with the largest possible packet size, because it yields the most compact
encoding and thus minimizes the probability of error.

For r=2, the block delivery probability is maximized with a packet size of 32.
However, the overhead on these packets due to headers is substantial. Indeed, the
channel utilization is maximized with a packet size of 64, despite a somewhat lower
block delivery probability. Note also that channel utilization is bounded above by 0.5.

For r=3, the channel utilization is bounded above by 1/3. This value is most nearly
reached with a packet size of 128. This combination of repetition rate and packet size
happens to be the best value in the table. In particular, nothing can be gained by
increasing r, since this would limit channel utilization to 0.25 (for r=--4), 0.20 (for r=--5)
and so on.

Finally, compare the data for r=2 at r=3 for a packet size of 64 bytes. The channel
utilization rates differ only minimally, but the block delivery probability is much
greater for r=3. In fact, it is about 50% greater, which nearly compensates for the fact
that each packet is transmitted three times instead of twice.

If we had complete and accurate information regarding packet error rates for all
receiver sites, we might be able to choose the packet size and retransmission rate for
each data block so as to maximize some function of the channel utilization observed at
all receivers. A policy decision would have to be made regarding the relative level of
service to be delivered to nearby and distant users.

Resource limitations have prevented us from collecting accurate packet error rate
estimates for all receiver sites. Moreover, the channel utilization figures computed with
the aid of the model are only approximate. We presently set our operating parameters
on the basis of available packet error rate estimates for several receiver sites we believe
to be representative.

Note that for large block sizes, the channel utilization and the delivery probability
decline exponentially with increasing block size, regardless of the packet size and
retransmission rate. Thus, the broadcast protocol without acknowledgments is not
effective for very large block sizes.

2.2. Information Protection

Since our broadcast system uses a public medium, we cannot prevent unauthorized
users from listening to the broadcasts. Yet, the dissemination of information must often
be limited. For example, there may be copyrights and other restrictions attached to the
information to be broadcast. To enable such control over the dissemination of
information, we encrypt all data blocks that are intended for a restricted audience.

100

IMAGINATWE SYSTEMS

Each block is encrypted using a combination of a master key and a randomly
generated data block key. The data block key is different for each data block, and is
transmitted along with it. The master key is secret: it is made available only to the
legitimate users of the service. In practice, we employ a table of master keys, identified
by number. Each encrypted data block carries a number identifying the master key
that was used to encrypt it. Unencrypted data blocks are identified by a key number of
zero. This scheme has the following properties:

* The information that is broadcast can be thought of as being separated into
distinct logical streams, each with its own master key. Consequently, users
can subscribe to certain services without having access to all services.

* The master key used for the encryption of a certain information stream may
be changed periodically, for example once a month. Paying subscribers can
be provided with the keys for the duration of their subscription. Since the
key number changes along with the key, the receiver will automatically
switch to the new key whenever a switch takes place. The key numbers in
the table may be reused.

Because of the hardware limitations of our receiver stations, we are unable to utilize
better-known encryption techniques such as DES or RSA. Instead, we have
implemented an algorithm which is very efficient, and appears to afford a level of
security commensurate with the value of the information we seek to protect. Our
cryptographic algorithm uses a linear feedback shift register with non-linear output to
generate a pseudo-random stream that is combined with the transmitted data. The
shift register component of the algorithm is shown in Figure 7-5. At an effective data
rate of 2.2 KBits per second, the decryption utilizes about 6.8% of the available CPU
time on an IBM PC. (All performance figures pertain to implementations written
entirely in C)

2.3. The Predicate Data Model

When considering how to provide access to community information one soon realizes
that it is a problem that cannot be solved by the application of standard commercial
database techniques. Relational and hierarchical data models are far too restrictive to
allow users to locate information of interest, because of the relatively unstructured
information (such as newspaper articles) that the system must handle.

We have developed a new data model, called the Predicate Data Model, for our
application. The Predicate Data Model builds on ideas from full-text retrieval systems
to fill our needs. The Predicate Data Model is capable of handling a wide variety of
information, including text-oriented data (news stories and electronic mail), information
that has somewhat more structure (community event descriptions and city guides), and
other kinds of data, including computer programs.

101

IMAGINATIVE SYSTEMS

Every entry in a predicate data base, whether it be a New York Times article or a
restaurant review, consists of a number of fields. The specific fields found in an entry
depends on its type. For example, a newspaper article has a source identifier (e.g,
"New York Times"), along with category, subject, priority, section, title, author, date,
and text fields. The text field contains the body of the article. Likewise, an event
listing includes location, time, title, and abstract fields. Some fields can only contain
certain words: for example, the priority field of a news article is chosen from the words
flash, bulletin, urgent, regular, and deferred. Other fields, such as the author or text
field, contain arbitrary text, and a user query can include arbitrary words and phrases.

A user phrases queries as boolean combinations of predicates on fields. The predicates
restrict fields to hold certain desired values: for example, predicates can limit attention
to data base records that contain specified date ranges, words, or phrases. This
approach is in contrast to controlled vocabulary systems where information is only
indexed on a predefined set of index terms and the user is limited to these terms when
formulating a query.

When the user submits a query to the system, a list of matching data base entries is
displayed along with a summary of each entry. Figure 7-1 is a picture of the user
interface that shows the result of entering the query "technology & (category
financial)". Once the menu of available entries is displayed, the user may enter the
number of the desired entry on the end of the query and press the return key. Figure
7-2 shows the display of the second entry from the menu of Figure 7-1.

We decided against basing our system solely on menus because we felt that free text
searching provides more expressive power and is easy to understand and use. Menu
based systems do have the advantage that the user can easily browse the database to see
what is available without having something specific in mind. We have tried to retain
this advantage of menu systems.

Our personal database system uses both free text and menu-based retrieval in an
effective way. A user specifies what information should be kept in the local database by
composing a set of free text queries. Because the system knows nothing a priori about
the user's interests (and the user knows little about the system's capabilities and the
scope of available information) unrestricted text is by far the most efficient medium for
expressing such information filters.

However, when it comes to examining the local database that was compiled with the
aid of these filters, the system "knows" what the user's interest profile is. This makes
menu-based retrieval the most efficient medium. The information filters defined by the
user serve as a menu of what is available in the local database; furthermore, the user
can use any of the filters, or any query, for example "(category news)", to obtain a list
of matching articles, and then browse through that list. We find that most of our users
use their information filters to browse the database.

102

IMAGINATIVE SYSTEMS

The greatest asset of our data model is that it is simple to understand. Thus our
users have a good conceptual model of precisely what the system can and will do when
they compose a query. This in turn allows them to use the system effectively.
However, our users still need to know certain things about the data base in addition to
the access mechanisms. Consider the problem of locating movie reviews. Is the query
"movie & review" appropriate, or might "(subject review) & movie" be better? To
help users learn about the data base and about composing queries, we provide printed
and on-line documentation, and we also provide a library of pre-planned queries that
users can incorporate into their personal data base system.

2.4. Reasoning About Predicate Databases

We have successfully demonstrated a prototype reasoning system that can determine
when a database contains information needed to process a given query. This reasoning
system uses a set of axioms for the predicates that are defined as part of our data model
to determine when a statement of the form "Q(x) -> DB(x)" is true. When Q(x)
implies DB(x), then the result set of Q will be a subset of DB. Thus, Q can be
processed using data found at DB.

The application of our content reasoning work is to enable us to use a collection of
independent databases to form an integrated system that we call a multi-database. For
example, our personal database system maintains a private database of information that
is of interest to its owner. However, when it accepts a query that it can not process, we
would like the personal database system to forward the query to another system. Work
on a full implementation of query routing is underway.

2.5. Plans for the Next Year

Our plans for the coming year for our Community Information System project are to
gain more practical experience with the system that we have built, and to begin to
exploit our fundamental work on database theory through implementation. Our plans
for gaining experience with user communities include (1) a two hundred site test of our
technology this fall at homes in the Boston area (this test is being underwritten by
another sponsor), (2) export of software that will allow other DARPA sites to access our
databases, and (3) the integration of our database system into the LCS Common
System. The fundamental work that we plan to integrate into our system is the
addition of the database content reasoning. Content reasoning will allow us to direct
user queries to appropriate databases, and thus produce an integrated system out of a
collection of independent databases.

103

IMAGINATIVE SYSTEMS

3. IMAGINE PROGRAMMING LANGUAGE

Work continues by D. Gifford and J. Lucassen on an investigation of how to simplify
programming languages by eliminating many of the distinctions between built-in and
user-defined types. The intent is to allow many facilities that are normally provided a
part of a language environment to be sup.Aied as library packages. In order to
accomplish this goal we have focused on how to make user defined types "first class
citizens" in a programming languages, with the same rights and privileges as built-in
types. The two specific areas that we have examined include (1) new ways of type
checking programs and (2) optimization of programs.

The type checking work that we have completed has examined how a type checker for
the second-order lambda calculus could be extended by users. The idea is to allow the
type of certain expressions to be computed by user defined functions. This simple
addition would allow a wide range of flexibility in the type of programs that could be
accepted by the type checker.

The optimization work that we have completed has examined focused on the partial
evaluation of programs that have functional subcomponents. The programming
language that we have developed as part of this work, Imagine, has a functional
sublanguage. Thus the portions of a program that are functional can be easily statically
determined. Partial evaluation is a powerful technique that encompasses optimizations
such as constant folding and in-line procedure substitution.

104

IMAGINATIVE SYSTEMS

5 matching articles found. lines 1:18 of 18

1 sep 19, 10:48 (121 lines) regular (Financial)
NFW YORK -- After a record year, the market for public stock
offerings by private companies has gone into a slump, forcing many or
these companies to bypass the new-issue market and seek capital --
often through creative deals -- elsewhere.

2 sep 18, 22:37 (80 lines) regular (Financial)
NEW YORK -- Technology stocks took a beating Tuesday, for two
unrelated reasons, and helped to keep the market on the downside.

3 sep 18, 21:18 (82 lines) urgent (Financial)
A digest of business and financial news for Wednesday, Sept. 19.
1984:

4 sep 18, 18:22 (70 lines) urgent (Financial)
NEW YORK -- Stock prices dropped Tuesday in accelerated trading, with
some of the technology and large capitali7ation issues registering
the biggest declines.

5 sep 18, 7:41 (113 lines) deferred (Financial)
london - The American lawyer would have been rubbing his hands,
except that he was jogging in Hyde Park, so he was swinging his arms.

technology & (category financial);

Figure 7-1: User Interface: Menu Screen

105

IMAGINATIVE SYSTEMS

Article N409187.727: lines 1:23 of 80
...

type: New York Times general news copy
priority: regular
dale: 01--18--84 2237edt
category: Financial
subject: MARKFTPIACF
title: (B i7Day)
authui : DANIEl F. CUFF
source: (c)1984 N.Y. Times News Service
text:

NFW YORK - Technology stocks took a beating Tuesday, for two
unrelated reasons, and helped to keep the market on the downside.

First, worry over problems with a disk drive hurt Control Data and
Burroughs. Second, the semiconductor issues were battered by a
bearish brokerage house report on Motorola.

Burroughs opened down 2 3/8 Tuesday morning after an order imbalance.
The drop in Burroughs, which closed the day at 53, off 3 5/8, followed
Control Data's slide. On Monday, Control Data dropped 2 1/8. and it lost
an additional 3/8 Tuesday, to close at 26 1/8.

Control Data. according to analysts, encountered problems with a
thin coating on the disk. ''If that chemical compound is not
virtually perrect, trouble ensues,'' said Ulric Weil, an analyst at

Morgan Stanley & Co. ''We are talking about tolerances the thickness
of a human hair.'

technology & (category financial);2

Figure 7-2: User Interface: Article Display

106

IMAGINATWE SYSTEMS

Bytes Contents

0:1 I checksum I

2:3 I checksum I

4 IPacket length I

5 I Protocol I

6:7 1 Block seq no. I Reserved I

8:9 1 F I Packet no. I

The format of packet headers, including header information attached by both
the packet layer (bytes 0 through 4) and the data layer (bytes 5 through 9.)

Figure 7-3: Packet Headers

107

IMAGINATIVE SYSTEMS

Burst No. of
Length: Bursts: Observed bursts, * = 10

Fxpected Observed
1 4400 736 ************************************ //
2 20 54
3 20 123
4 20 138
5 20 137
6 20 110
7 90
8 41
9 21 **

10-14 29
15-19 7 *

20-26 4
65 1

Histogram of error burst lengths expected and observed on one megabyte
of data received over a noisy channel.

Figure 7-4: Error Burst Lengths

108

EMAGINATIVE SYSTEMS

0 1 2 3 4 5 6 7
I I I-- -- - - - - - -- - - - - - -- - - - - - -- - - - - -

I Ishirt Righti Ishift Lefti

I I -- - - - - - - - - - -- - - - - - - - -I
I I
I II

IBit-wise Exclusive-Or I

Now Byte

Figure 7-5

100

IMAGINATIVE SYSTEMS

NAME OF IAYFR: UNIT OF TRANSMISSION: PURPOSF OF lAYER:

Data Layer Data Blocks Frror Correction

Packet layer Packets Error Detection

Byte String layer Byte Strings Framing

(Byte Channel) (Bytes) (Transport)

The three layers of the broadcast protocol built on top of' the byte channel.

Table 7-1: Protocol Layers

110

IMAGINATIVE SYSTEMS

Packet Estimated Observed
Si7e Packet Packet

(in bytes) Error Rate Frror Rate

4 0.018 0.009
8 0.037 0.014

16 0.072 0.025
32 0.138 0.044
64 0.258 0.075
128 0.449 0.125
256 0.696 0.193
512 0.908 0.286

1024 0.991 0.415
2048 1.000 0.570
4096 1.000 0.711
8192 1.000 0.835

16384 1.000 0.953

Estimated packet error rates based on 4870 independent byte errors per

megabyte of data, and packet error rates actually observed on one megabyte

of data with 4870 byte errors.

Table 7-2: Packet Error Rates

111

IMAGINATIVE SYSTEMS

Optimal Optimal Block Corresponding
Block Packet number of delivery channel
size size repetitions probability utilization
-- n - -. .

256 256 1 .7940 .7365
512 512 1 .7045 .6780
1K K 1 .5789 .5678

2K 128 2 .7615 .3500
3K 128 2 .6645 .3054 (<)
3K 64 2 .7246 .3056
4K 64 2 .6508 .2745 (Q)

4K 128 3 .9349 .2871
6K 128 3 .9039 .2774
8K 128 3 .8740 .2684
10K 128 3 .8452 .2597
10K 64 3 .9227 .2594 (<)
12K 64 3 .9079 .2553
14K 64 3 .8935 .2512
16K 64 3 .8792 .2472

Optimal packet size and number of retransmissions, and resulting block

delivery probability and channel utilization, as a function of block
size for a particular noisy channel.

Table 7-3

112

IMAGINATIVE SYSTEMS

Number of repetitions (r):
r1 r=2 r=3 r=4

Pkt Deliv. Chann. Deliv. Chain. Deliv. Chann. Del iv. Chann.
Size Prob. Utiliz Prob. Utiliz Prob. Utiliz Prob. Utiliz

16 0.0000 0.0000 0.6441 0.1207 0.9889 0.123G 0.9997 0.0937
32 0.0002 0.0001 0.6936 0.2381 0.9839 0.2252 0.9993 0.1715
64 0.0027 0.0023 0.6508 0.2745 0.9683 0.2723 0.9976 0.2104
128 0.0098 0.0090 0.5805 0.2674 0.9349 0.2871 0.9917 0.2284
256 0.0283 0.0272 0.5325 0.2557 0.8873 0.2840 0.9773 0.2346
512 0.0636 0.0622 0.4974 0.2434 0.8238 0.2687 0.9465 0.2315
1024 0.1141 0.1127 0.4651 0.2298 0.7406 0.2439 0.8852 0.2186

Block delivery probability and channel utilization as a function of
packet size and number of repetitions, for blocks of 4K bytes
transmitted over a particular noisy channel.

Table 7-4

113

IMAGINATIVE SYSTEMS

Publications

1. Gifford, D. and Donahue, J., "Coordinating Independent Atomic Actions,",
Proceedings of IEEE Spring COMPCON 85, February 27, 1985, San
Francisco, CA.

2. Gifford, D., Lucassen, J., and Berlin, S., "Application of Digital Broadcast
Communication to Large Scale Information Systems", IEEE Transactions
on Selected Areas in Communications, (May 1985).

3. Gifford, D. and Spector, A. (ed.) "A Case Study of The Space Shuttle
Primary Computer System," Communications of the ACM, (September
1984).

Thesis Completed

1. Carnese, D. "Multiple Inheritance in Contemporary Programming
Languages," S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, September 1984.

2. Gunther, B. "Extended User Interface Support for a Personal Database
System," S.B. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, May 1985.

3. Schooler, R. "Partial Evaluation as a Means of Language Extensibility,"
S.M. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, August 1984.

4. Yoon, J., "Broadcast Based Electronic Mail Services", S.B. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge,
MA, May 1985.

Theses in Progress

1. Chiang, C. "Primitives for 3D Graphics," S.M thesis, MIT Department of
Electrical Engineering and Computer Science, Cambridge, MA, expected
September 1985.

2. Lucassen, J. Ph.D. dissertation, MIT Department of Electrical Engineering
and Computer Science, Cambridge, MA, expected June 1986.

3. Slivan, S., "An Interactive Graphics Interface for Clinical Applications
Software," S.M. thesis, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected September 1985.

114

IMAGINATIVE SYSTEMS

4. Stamos, J. "Remote Evaluation," Ph.D. dissertation, MIT Department of
Electrical Engineering and Computer Science, Cambridge, MA, expected
August 1985.

Talks

1. Gifford, D. "Research in Operating Systems and Computer Networks,"
ACM SIGOPS and IBM Zurich, January 1985.

2. Gifford, D. "The Boston Community Information System," Cambridge
University, Cambridge, England, September 1984.

3. Gifford, D. "The Boston Community Information System," Digital
Equipment Corporation, Hudson, MA, August 1984.

115

INFORMATION MECHANICS

Academic Staff

E. Fredkin, Group Leader

Research Staff

T. Toffoli G. Vichniac

Visiting Scientist

V. Sewelson

Graduate Student

N. Margolis

Undergraduate Students

P. Tamayo C. Ferreira

Support Staff

T. Cloney D. Zaig

INFORMATION MECHANICS

1. OVERVIEW

Our field of research: Information Mechanics is concerned with dynamical systems
that can be given two distinct interpretations: models of idealized physical processes,
and physical models of computational processes. On the one hand, the study of these
system leads to a better understanding of the physical basis of computation, both in
practical terms (e.g., efficient use of energy, virtually dissipationless computing) and in
theoretical terms (borrowing of physical concepts and mathematical methods). On the
other hand, this study provides new insights into computational models of natural
sciences. Whereas such insights have shown to be relevant at quite a conceptual level,
this second approach finds a practical motivation in the need for efficient computation.
This motivation suggests a very original use of computers in the sciences and stems
from the following tension. While digital computers are discrete objects, much of
science is expressed with continuum mathematics (e.g., the differential equations of
physics). In order to overcome this mismatch and let computers do what they do best;
i.e., logical manipulation of bits as opposed to necessarily imprecise floating-point
arithmetic, one can restrict oneself to models that are already fully discrete. Such
models lend themselves to exact simulation by finitary means. Numerical analysis, an
inevitable and often opaque screen between standard (continuum) models and their
discrete simulations is eliminated altogether.

We concentrated this year again on these important systems of information-mechanics:
cellular automata (see below, Sections 2 and 3), reversible computation (Section 4), and
reversible finite-difference equations (Section 5). The theoretical aspect of or work was
complemented and stimulated by the construction of hardware dedicated to the efficient
simulation of these dynamical systems.

2. CELLULAR AUTOMATA

Description: Cellular automata are distributed dynamical systems governed by laws
that are local and uniform, in analogy with the laws of physics. However, unlike the
traditional models of physics, viz., differential equations, cellular automata operate on
discrete space and time, and the dynamical variables take on values from a finite set.
As a result, one obtains exactly computable models of dynamical processes.

The cellular-automaton machine (CAM:) The exact computability of cellular
automata is exploited by our cellular-automaton machine -- a high-performance
simulator of discrete, distributed dynamical systems. CAM has now reached a mature
stage of development; it has been used extensively by us and by a number of visiting
scientists, and has been demonstrated on numerous occasions in the U.S. and abroad.

The success of CAM has raised an issue of scientific ethics. In the natural sciences, an
experiment is considered scientific only if it is repeatable by independent investigators.
But while the natural world is freely accessible to anyone, experiments that are possible
only with a high-performance machine can be repeated and extended only by

118

INFORMATION MECHANICS

investigators who have access to comparable computing resources. And in fact, we have
received a great number of requests from individuals and institutions who want a copy
of CAM for their own laboratories.

To satisfy these requests, we have commissioned Systems Concepts, San Francisco,
CA, to develop and produce a version of CAM that fits in a single slot of the IBM-PC,
and we are providing them with technical assistance and with the entire software
(programs and applications data). The design of this software and the reaction of a
book to accompany the commercial version of CAM has been one of our main efforts
this year. We have striven to make the software extensible by the end-user, and to this
purpose we have adopted and upgraded a public-domain version of the Forth
programming language. Both hardware and software should be available to the public
in the third quarter of 1985.

Inhomogeneous cellular automata: Standard cellular-automaton rules are defined
to be uniform, i.e., the same transition function holds at every site of the lattice. We
have recently investigated a generalized class of networks, the Inhomogencous Cellular
Automata, where several transition rules are distributed on the lattice. We found that
the interplay of two simple Boolean functions reveals ordered and adaptive behavior of
importance in the study of self-organizing systems.

Parallel computation: In cellular automata, all the sites compute their next state
in a synchronous way. Cellular automata thus offer a paradigm for parallel architecture.
They provide a stimulus to designing algorithms which effectively exploit the potential
of massively parallel hardware. We have studied the effects of synchronous updating in
a regular network of locally interconnected Boolean variables (i.e., Ising spins). We
recently found that even in this very simple instance of distributed system, one must
strictly follow somewhat counter-intuitive rules to make a full use of the parallel
computational resources. We are now investigating how this parallelism can split a
simple network into two separated complex interweaved ones.

The CAM-7 project: We have investigated in considerable detail the feasibility of
constructing a special-purpose machine for the efficient simulation of three-dimensional
cellular automata of size 512 x 512 x 512, with 2 bits per site and an update rate of
60Hz for the whole array. We are now completing a proposal for a major grant to built
such a machine.

3. EXTENSION OF COMPUTATIONAL CONCEPTS TO NATURAL
SCIENCES

Conservation laws: W have continued this year our program of reducing concepts
from physics to informational primitives such as counting, labeling, and comparing.
Very important examples of such concepts are quantities conserved under information-
preserving dynamics. In continuous variational systems, these conserved quantities are
intimately related to symmetries (Noether's theorem). Discrete systems, on the other

119

INFORMATION MECHANICS

hand, are not kno,'vn to obey a similar relation. The derivation of a systematic way to
construct conserved quantities is a central and difficult problem in the theory of discrete
structures; it has resisted our efforts so far. But recently, concentrating on a cellular-
automaton rule singled out by us as "most remarkable," the hydrodynamicist
Y. Pomeau succeeded in deriving for that rule a conserved quantity analogous to
energy. We are now striving to extend this result, originally derived by methods
borrowed from fluid dynamics, by using techniques more suited to discrete structures,
such as those devised recently by E. Goles Chacc (who will be a Visiting Scientist in our
Group next spring).

Information treatment of an irreversible process: We found recently that any

iterated deterministic manipulation on a random configuration of symbols is analogous
to the quenching of a disordered system to low temperatures. This permits an analysis
of the processes of ordering via domain growth and interface motion in terms of
propagation of information.

Applications to efficient computation: Motivated by the importance of exactly
computable models (see above), we have investigated finitary models based on the
combinatorics of a large number of discrete variables. We have found, using
Partitioning Cellular Automata, that well-known parabolic ("heat") and hyperbolic
("wave") partial differential equations are the limits, over distances much greater than

the mean free path, of suitable lattice gases of binary variables.

4. REVERSIBLE INFORMATION PROCESSING: FOUNDATIONS AND
QUANTUM THEORY

Foundations: A major part of our current research builds upon the discovery by
Bennett, Fredkin, and Toffoli that reversible computation is compatible with the laws
of physics. We developed the concept of "virtually dissipationless computation," and
precisely characterized it by a quantitative bound that takes into account noisy
environment.

Quantum Computation: We have completed a unified treatment of Quantum
Computation, based on the Billiard-Ball-Model cellular automaton. This model yields a
description of deterministic computations which could, in principle, operate within the
constraints of a local quantum-mechanical Hamiltonian. An open problem which we are
studying is the question of whether a truly parallel quantum implementation of such a
cellular automaton can operate at a uniform computational rate. If this is the case, an
important barrier to computation using elements of atomic dimensions will have been
passed.

120

INFORMATION MECHANICS

5. REVERSIBLE FINITE-DIFFERENCE EQUATIONS

Oscillations resulting from information conservation: We found that the
conservation of information entail oscillations in reversible finite-difference equations.
We completed a treatment of these oscillations in terms borrowed from numerical
analysis. Taking now the point of view of dynamical system theory, we are starting a
more quantitative study that involves the measurement of Liapunov exponents for the
oscillations.

6. SCIENTIFIC EXCHANGES

Various kinds of exchanges: The novelty of our field of research, the absence of a
journal fully dedicated to it, and the interest from the scientific community make it
necessary to devote much effort in scientific exchanges. In innumerable occasions, we
have demonstrated CAM to scientists from various disciplines. We have accepted many
invitations to give seminars, conferences talks, and courses. We have also built and
installed a copy of CAM for permanent exhibit at the new Computer Museum in
Boston.

Benefits of exchanges: These scientific exchanges have proven to be very beneficial
to our research, although they demand much time and effort. They allow us to expose
(and subcontract) problems related to our field; and conversely to receive suggestions
how best to use our methods and hardware facilities.

121

INFORMATION MECHANICS

Publications

1. Vichniac, G.Y. "Instability in Discrete Algorithms and Exact Reversibility,"
SIAM Journal Aig. Disc. Meth. 5 (1984), 596.

2. Toffoli, T. "A Comment on 'Dissipation and Computation,'" Phys. Review
Letter 53 (1984), 1204.

3. Giraud, B.G. and Vichniac, G.Y. "Effective Forces and Rigorous Variational
Principles," to appear in Phys. Rev. A.

4. Vichniac, G.Y. "Cellular Automata and their Applications," to appear in
Disordered Systems and Biological Organization, F. Fogelman,
G. Weisbuch, and C. von der Malsburg (Ed.), Lectures Notes in Computer
Science, Springer-Verlag.

5. Hartmann, H. and Vichniac, G.Y. "Inhomogenous Cellular Automata," to
appear in Disordered Systems and Biological Organization, F. Fogelman,
G.-- -Weisbuch, and C. von der Malsburg (ed.), Lectures Notes in
Computer Science, Springer-Verlag.

Talks

1. Fredkin, E. "Physics and Computation,"

Geological Institute, Moscow, September 1984.

Space Center, Moscow, September 1984.

Physics Colloquium, Carnegie-Mellon University,
October 1984.

Physics Colloquium, Harvard University, October 1984.

2. Fredkin, E. "Personal Computers and the Future,"
Soviet Academy of Science, Address to the Presidium,
Moscow, September 1984.

Academy of Science, Computation Center, Moscow,
September 1984.

Dickson Prize Acceptation Ceremony, Carnegie-Mellon
University, October, 1984.

3. Toffoli, T. "Parallel Computation: Connection with Physical Modeling,"

122

INFORMATION MECHANICS

Institute of Mathematics, University of Rome, Italy,
October 1984.

Institute Applic. Computers, National Research Council,
Rome, Italy, October, 1984.

National Institute for Nuclear Physics, Frascati, Italy,
October, 1984.

Centro Studi IBM, Rome, Italy, October 1984.

Electrical, Computer, and System Engineering Research
Seminar, Boston University, November 1984.

Computer Science Department, Northeastern University,
Boston, December 1984.

Computer Science Colloquium, Rensselaer Polytechnic
Institute, Troy, NY, April 1985.

4. Toffoli, T. and Margolus, N. "CAM Demonstration," Workshop on Theories
of Complexity: Common Frontiers of Physics, Biology, and Computation;
Dedham, MA, August 1984.

5. Vichniac, G. Course at the NATO Advanced Research Workshop on
Disordered Systems and Biological Organization, Les Houches, France,
February/March 1985.

6. Vichniac, G. Speaker at Meeting on Problems in Optimization and
Complexity and the Statistical Mechanics of Disorder, CECAM, Orsay,
France, March 1985.

7. Vichniac, G. Speaker at UNESCO international Workshop on the Use of
Microcomputers in Science Education for Schools, Balaton, Hungary, May
1985.

Awards

1. Fredkin, E. 1984 recipient of the Dickson Prize of Science.

123

MESSAGE PASSING SEMANTICS

Academic Staff

C.E. Hewitt, Group Leader

Research Staff

G. Agha T. Reinhardt

11. Lieberman

Graduate Students

J. Amsterdam P. deJong

Undergraduate Students

J. Allard C. Manning
J. Aspnes S. Penberthy
0. Etzioni

Support Staff

C. Smith

MESSAGE PASSING SEMANTICS

1. OVERVIEW

The goal of the research is to develop a parallel architecture for "Open Systems"
using the formal theory of actors.

2. OBJECTIVES

We are addressing the problem of facilitating cooperation between open systems which

are separately developed and maintained. For separately built systems to communicate,
there must be some minimum of common knowledge and structure. In addition, each
system must have some self-referential ability in order to relate its structure to its
behavior. Using this common knowledge, open systems must bootstrap further
capabilities for communication and cooperation.

In order to provide tools which can be used to build open systems with relative ease,
we are developing the Apiary architecture. The Apiary architecture has been
implemented using a network of conventional processors; it supports dynamic
reconfigurability, extensibility, and resource management using techniques such as load
balancing and real-time garbage collection.

3. APPROACH

Several characteristics of open systems must be considered. Among these are:

Asynchrony: One cannot predict when new information may enter an open system
and, furthermore, the system may be queried before or after the answers to such queries
are available. Changes occur at different points at unpredictable times.

Continuous Availability: It should be possible to modify a system incrementally
and dynamically rather than shutting it down.

Arms-Length Relationships: The knowledge bases and internal arrangements of
one system (or system component) are not available to others.

Inconsistent Knowledge Bases: Because of the differing concerns of the
independent participants, different knowledge bases will contain conflicting beliefs.

Parallelism: Different agents in a system function in parallel. New agents may be
created as needed.

Actors are a very general modeling technique that address issues of parallelism,
resource control, continuous availability and the controlled sharing of information in
open systems. The mathematical theory of actor systems addresses issues of abstraction
and parallel composition. Abstraction provides us with the ability to view systems at a
higher level, ignoring all the details about their internal operations. Larger systems can
be built from smaller modufles using parallel composition so that the constituent parts
are still asynchronous and function independently of each other.

126

MESSAGE PASSING SEMANTICS

4. CURRENT STATUS

The research so far has led to exciting developments in the understanding of the
nature of parallelism and in the semantics of concurrency. Our work has evolved along
two lines: the development of the theoretical foundations, and an implementation
designed to create an environment in order to test the hypotheses.

Recent work in the area of actor semantics has provided a model of actor systems
using finitary elements with concrete intuitive structure. A variant of the reduction
calculus has been defined which in fact models the technically difficult semantics of
arrival order nondeterminism for the incoming communications. An algebraic model for
actor systems has been developed. This model takes into account the open interactive
nature of such systems. An observation equivalence relation allows us to encapsulate
systems and specify their behavior abstractly without assuming a closed-world
hypothesis. The study of actor semantics has led to a better understanding of
concurrent systems in their full generality.

The development of interactive editing and debugging tools is one aspect of the
implementation. In particular, a technique called the biography mechanism has been
implemented. When the system is run in a debugging mode, each actor can record all
the events which have occurred in its lifetime. From this record, the path of the
computation may be reconstructed, examined, and even reversed for debugging
purposes. Since the events provide information that is too detailed, a higher level
representation is provided in terms of transactions. Transactions group events according
to the abstractions of the source program, so they provide a basis for extending
abstraction into the debugging tools.

Resource allocation is a critical problem for concurrency. In the context of open
systems there are no global consistency requirements. Instead, different actors may
compete for limited resources. Sponsors provide the resources dynamically, continually
judging the utility of each computation. Sponsors have been implemented to support
resource management.

5. FUTURE PLANS

Our major effort over the next two years will be directed towards the study and
implementation of description systems based on the actor model. At a linguistic level,
description systems provide the means to use generalized pattern-matching for data
extraction and authentication. At a higher level, description systems relativized within
viewpoints also provide the means to deal with contradictions in the local databases of a
system.

Our long-term challenge is to determine the minimal common knowledge and
structure necessary to establish communication and cooperation between independently
developed systems and to provide tools for the construction and coordination of self-
reflective systems.

127

MESSAGE PASSING SEMANTICS

6. RESOURCES AND PARTICIPANTS

Implementation of demonstration systems takes place primarily on a network
architecture based on Symbolics 3600 LISP Machines. The Laboratory's DEC 20/60 is
used for auxiliary support.

128

PROGRAMMING METHODOLOGY

Academic Staff

B. H. Liskov, Group Leader W. E. Weihl

Research Staff

P. R. Johnson R. W. Scheifler
S. Perl

Graduate Students

S.-Y. Chiu G. T. Leavens
M. S. Day B. M. Oki
E. Kolodner J. P. Restivo
R. Ladin E. F. Walker

Undergraduate Students

L. W. Allen C. D. Chambers
E. E. Anderson M. D. Ober

Support Staff

A. L. Rubin

Visitors

R. Leidhammar T. Takai

PROGRAMMING METHODOLOGY

1. OVERVIEW

This year we have continued to work on the Argus programming language and system
(see [30], [32]). Argus is being developed to support the programming and execution of
distributed programs, which run on nodes (i.e., computers) connected by a network. It
provides two major mechanisms. Guardians allow a distributed program to be
decomposed into components. A guardian resides at a single node and contains within
it data objects and processes; it is resilient to crashes of its node. It provides a set of
operations called handlers that can be called by other guardians to access and modify
its objects. Some of its objects are stable and are written to stable storage devices
periodically. After a crash, the Argus system restarts the guardian with its stable
objects as they were as of the last write to stable storage; the guardian then runs a
special recovery process to restore the rest of its state.

Atomic actions, or actions for short, allow distributed computations to cope with
concurrency and failures. Concurrent actions are serialized, which means that their
effect is the same as if they were run in some serial order. Also, they are total: either
an action completes entirely, or, if this is impossible, it has no effect. In the former case
we say the action commits; otherwise, it aborts.

Actions in Argus can be nested; an action can have one or more subactions.
Subactions provide a clean way of having concurrency within an action, and can also be
used as a checkpoint mechanism. An action without a parent is called a topaction. A
handler call is performed as a subaction of the caller, which ensures that a call is
performed either zero or one time. If the called guardian is up and accessible, the call is
performed once. Otherwise, the call subaction aborts, ensuring that the call has no
effect.

During the current year, we continued working on the Argus implementation, and
succeeded in running distributed programs for the first time. We also continued
developing the debugger, and began experimenting with some applications written in
Argus. In addition, we studied issues in program structure for distributed systems,
completed the design of a debugging system that takes advantage of information about
atomic actions, developed a concurrency control method for long read-only actions, and
developed an algorithm for determining approximate agreement. These
accomplishments are discussed in more detail below.

2. IMPLEMENTATION

During the preceding year, we had succeed in getting individual guardians to run in
isolation. This meant that we had to implement enough of the action system that
actions running at a single guardian could lock objects and commit or abort. However,
we did not need to worry about committing actions that visited many guardians, nor
did we need to run handler calls. This year we continued our work on the
implementation, and now have enough of the system running that users can begin to
experiment with Argus.

130

PROGRAMMING METHODOLOGY

Our implementation of handler calls works as follows. The arguments of handler calls
are communicated by value, which ensures that objects belonging to a guardian cannot
be accessed directly by any other guardian. The Argus system is responsible for
constructing and sending the messages that must be exchanged in order for the called
guardian to be aware of the call, and the calling guardian to find out about the results.

Values of a type are exchanged by using a canonical external representation for
communication. Each implementation of the type provides an encode operation that
maps from the internal representation to the external representation and a decode
operation to perform the reverse mapping. This approach allows each implementation
to be developed independently of other implementations of its type; the
implementations need agree only on the external representation. Our method allows for
sharing structure to be preserved. For example, if an argument to a call is a graph with
a shared subnode, then we will preserve this structure in the message so that the graph
that arrives at the called guardian also contains the shared subnode. The approach is
described in [23].

As mentioned above, each handler call in Argus is run as a subaction of the calling
action. Our communication method relies on this. A call message is divided into
packets, if necessary. Then each packet is sent as a datagram. Although it is quite
likely that each datagram will arrive at its destination, assuming the destination is
running, delivery is not guaranteed. However, we do not buffer the datagrams after
they are sent. Instead, if the calling guardian discovers that a call did not arrive, it
simply redoes the entire call. There are two reasons why this is possible:

1) The calling program must wait until the call returns. Therefore, the
arguments are still accessible and furthermore have not been changed. They
can simply be re-encoded.

2) Each call runs as a subaction. If the first attempt to do a call does not
succeed, we abort its subaction, which ensures that the system state cannot
reflect any effects of the first attempt. Aborting is necessary because the
call may have been performed either totally or partially, even though it
appears otherwise to the caller. Since the first attempt aborted, it is safe to
make a second attempt. The second attempt runs as a subaction that is
distinct from the one used in the first attempt.

Not buffering the datagrams is a good idea provided they are delivered with high
probability. If not, the work required to redo the call is too large. We do not know yet
whether the probability of delivery is high enough. If we discover that it is not, we will
add flow control at some future time. Notice that we are doing an end-to-end approach
[39] here, with checking at the top level, i.e., the call. As is always the case with this
approach, lower level checking may be needed to improve the performance.

We are also developing an Argus debugger. We want debugging of distributed

131

PROGRAMING METHODOLOGY

programs to be similar to debugging of sequential programs, with breakpoints settable

at calls and returns, etc. Of course, it is necessary that information about all

breakpoints be displayed at the same terminal, even if the breakpoints take place at

guardians at different nodes.

To this end, we are developing a distributed debugging system. The debugger

actually runs in each guardian being debugged. To make display of information

convenient, we are developing a server, called the X window system, that controls access
to a bitmap display and provides primitives for window management. The server can

be used by the debugger at the various guardians by sending requests to it, so it

supports our goal of displaying information at a single device.

The debugger has two additional goals of interest. First, it allows us to switch a

guardian's code between production mode and debugging mode. In a system like Argus,
individual components are long lived. A production component must run efficiently; we

do not want to pay for the ability to debug the component in either space or time. On

the other hand, if a problem develops in the component, we want to switch to
debugging mode. Our implementation will allow the debugger to be brought in on the
fly, and swapped out again later.

The second goal is to have all interaction with debugger be strongly typed. For
example, this allows the debugger to display a string in a meaningful way, e.g., "abc",
instead of as a bunch of bits or integers. Also, since Argus supports user-defined
abstract types, we want the same ability for these types. A thesis completed this year
by J. Restivo [38] contains a design for this part of the debugger.

A special problem in a distributed system is that a single type may have different
implementations at different nodes. This is one reason why we chose to have the
debugger actually reside in each guardian. The debugger inside a guardian can deal
with the internal representation chosen for a type in that guardian in a straightforward

manner.

3. LINGUISTIC ISSUES IN DISTRIBUTED PROGRAMS

A programming language for distributed computing must provide a set of
communication primitives and a structure for processes. In work done this year (see
[331), we examined one possible choice, synchronous communication primitives (such as
rendezvous or remote procedure call) in combination with modules that encompass a
fixed number of processes (such as Ada tasks or UNIX processes), and we evaluated the
program structures needed to manage certain common concurrency control problems.
Our concern here is expressive power: the degree to which common problems may be
solved in a straightforward and efficient manner. Our analysis indicates that the
combination of synchronous communication with static process structure imposes
complex and indirect solutions, and therefore is poorly suited for applications such as
distributed programs in which concurrency is important. To provide adequate

132

PROGRAMMING METHODOLOGY

expressive power, a language for distributed programming should abandon either
synchronous communication primitives or the static process structure.

Our analysis is based on the client/server model, in which a distributed program is
organized as a collection of modules, each of which resides at a single node in the
network. Modules do not share data directly; instead they communicate through
messages. Modules act as clients and as servers. A client module makes use of services
provided by other modules, while a server module provides services to others by
encapsulating a resource, providing synchronization, protection, and crash recovery.
The client/server model is hierarchical: a particular module may be both a client and a
server.

Although other models for concurrent computation have been proposed, the
hierarchical client/server model has come to be the standard model for structuring
distributed programs. Lauer and Needham [29] argued that the client/server model is
equivalent (with respect to expressive power) to a model of computation in which
modules communicate through shared data. Nevertheless, the client/server model is
more appropriate for distributed systems because speed and bandwidth are typically
more critical in the connection between a module and its local data than between
distinct modules. Although certain specialized applications may fit naturally into
alternative structures such as pipelines or distributed coroutines, the hierarchical
client/server model encompasses a large class of distributed programs.

There are two main alternatives for communication primitives: synchronous and
asynchronous. Synchronous mechanisms provide a single primitive for sending a
request and receiving the associated response. The client's process is blocked until the
server's response is received. Examples of synchronous mechanisms include procedure
call, remote procedure call [361, and rendezvous [11]. Languages that use synchronous
mechanisms for communication include Mesa [351, DP [6], Ada [111, SR [2],' MP [41]
and Argus [30].

Asynchronous communication mechanisms typically take the form of distinct send
and receive primitives for originating requests and acquiring responses. A client process
executing a send is blocked either until the request is constructed, or until the message
is delivered (as in CSP [241). The client acquires the response by executing the receive
primitive. After executing a send and before executing the receive, the client may
undertake other activity, perhaps executing other sends and receives. Languages that
use send/receive include CSP and PLITS [17].

There are also two choices for process structure within a module. Modules having a
static structure encompass a fixed number of threads of control (usually one) that are
available to respond to clients' requests. The programmer is responsible for

11n addition to remote call, SR provides the ability to send and request without waiting for the
response.

133

PROGRAMMING METHODOLOGY

multiplexing these threads among a varying number of activities. Examples of modules
having a static process structure include Ada tasks, DP monitors, and CSP processes,
where there is just one process per module, and SR, where there may be multiple
processes per module. (Although an Ada task can create subsidiary tasks dynamically,
these subsidiary tasks cannot be addressed by the client as a group.) The multiplexing
mechanisms available to the programmer include guarded commands and condition
variables.

An alternative to the static structure is the dynamic structure, in which a variable
number of processes may execute within a module. (Note that a module's process
structure is independent of the encompassing system's process structure; the number of
processes executing within a module may vary dynamically even if the overall number
of processes in the system is fixed.) The system is responsible for scheduling, but the
programmer must synchronize the use of shared data. MP, Argus, and Mesa are
examples of languages in which the basic modular unit encompasses a dynamic process
structure.

All four combinations of communication and process structure are possible. Figure
10-1 shows the combinations provided by several languages. We are not awsri of any
languages that provide asynchronous communication with dynamic processes. Although
such languages may exist, this combination appears to provide an embarrassment of
riches not needed for expressive power.

Static Dynamic

Synchronous Ada tasks, DP, SR Argus, Mesa, Starmod, MIP

Asynchronous CSP, PLITS, Starmod

Figure 10-1: Communication and Process Structure in Some Languages

To determine whether a particular structure is adequate, it is necessary to consider the
concurrency requirements of the modules that make up a distributed program. Our
discussion centers on the concurrency needs of modules that act as both clients and
servers; any linguistic mechanism that provides adequate concurrency for such a module
will also provide adequate concurrency for a module that acts only as a client or only as
a server.

The principal concurrency requirement is the following: if one activity within a
module becomes blocked, other activities should be able to make progress. A system in
which modules are unable to set aside blocked activities may suffer from unnecessary

134

PROGRAMMING METHODOLOGY

deadlocks and low throughput. For example, suppose a server cannot carry out one
client's request because another client has locked a needed resource. If the server then
becomes blocked, rendering it unable to accept a request to release the resource, a
deadlock will occur that was otherwise avoidable. Even when there is no prospect of
deadlock, a module that remains idle when there is work to be done is a performance
bottleneck.

We can distinguish two common situations in which an activity within a module
might be blocked:

1) Local Delay: A local resource needed by the current activity is found to be
unavailable. For example, a file server may discover that the request on
which it is working must read a file that is currently open for writing by
another client. In this situation, the file server should temporarily set aside
the blocked activity, turning its attention to requests from other clients.

2) Remote Delay: The module makes a call to another module, where a delay
is encountered. The delay may simply be the communication delay, which
can be large in some networks. Alternatively, the delay may occur because
the called module is busy with another request or must perform considerable
computing in response to the request. While the calling module is waiting
for a response, it should be able to work on other activities.

In [33] we analyze several program structures that might be used to meet the
concurrency requirement stated above. Based on this analysis, we found that languages
that combine synchronous communication with a static process structure can provide
adequate expressive power for avoiding local delays, as illustrated by monitors and by
languages with a fully general guarded command mechanism. These languages do not,
however, provide adequate expressive power for avoiding remote delays. For monitors,
this problem has come to be known as the nested monitor call problem [22], [341. Our
analysis shows that these languages suffer from an analogous problem.

We believe that it is necessary to abandon either synchronous communication or static
process structure, but a well-designed language need not abandon both. If the language
provides asynchronous communication primitives, then a server can work on one client's
request in parallel with waiting on behalf of some other client. However, the need to
perform explicit multiplexing is a disadvantage of this choice of primitives.

Alternatively, if a language provides dynamic process creation within a single module,
as in Argus and Mesa, then the advantages of synchronous communication can be
retained. When a call message arrives at a module, a new process is created

automatically (or allocated from a pool of processes) to carry out the request. When the
process has completed the call, a reply message is sent back to the caller, and the
process is destroyed or returned to the process pool. Only two messages are needed to
carry out the call. The new process ensures that the module is not blocked even if the

135

PROGRAMING METHODOLOGY

request encounters a delay. The process must synchronize with other processes in the

module, but all the processes are defined within a single module, which facilitates

reasoning about correctness. Finally, a dynamic process structure can mask delays that

result from the use of local input/output devices, and may permit multiprocessor nodes

to be used to advantage. We think synchronous communication with dynamic processes

is a better choice than asynchronous communication with static processes; a detailed

justification for this opinion is given in [311.

4. A DEBUGGING METHOD TAILORED TO ATOMIC ACTIONS

S.-Y. Chiu completed a thesis on debugging with a system that supports atomic

transactions [101. The main conclusion of this thesis is that structuring activities as

nested atomic actions makes debugging concurrent and distributed programs easier.
The thesis develops a method for debugging computations in Argus. Using the method,
a person debugs a concurrent and distributed computation much like he or she would
debug executions of traditional sequential programs. The method and implementation

approach presented in this thesis are applicable to other action systems, even though
details may differ.

The method uses action trees, together with a serialization order, to summarize a
computation to the user. A computation is a group of topactions; an action's tree is the
hierarchy of subactions that are contained within the action; a serialization order is the
ordering of sibling subactions and topactions in some equivalent serial execution.

In the method, a node in an action tree is viewed as a map from a pre- state to a post-

state. (A state is a map from object identifiers to object values.) The value of an
object in the pre-state of an action A is the net effect at the object of all modifications

made by actions serialized before A and all modifications made by ancestors before A
ran. The value of an object in the post-state of A is the pre-A value of the object

updated by the modifications of A, if any. A person who is debugging an action will be
interested primarily in objects that are accessible from the action's environment, i.e.,
variables that are global to the action, as well as the arguments and input to the action

and the results and output from the action.

A user follows the progress of an action by doing a serial walk of the action's tree. In
a serial walk, committed subactions of a node are visited in serialization order. Where
appropriate, the user can choose to ignore the details of any subaction in the tree.

Debugging a faulty action involves three phases. In Phase Zero, some subset of an

action's history is collected as the action runs. The history that is collected is used for

supporting the next two phases of the method, and is discussed further below. Phase
Zero history is saved for all actions that run in a program of interest. Older saved
history, however, is discarded as space is needed. Phase Zero does not require any user

intervention.

136

PROGRAMMING METHODOLOGY

Phase One is the first of the two interactive phases in the method. In Phase One, the
user uses the computation's action trees, the serialization order of siblings, and other
saved history to narrow a bug to as "small" an action in a tree as possible: this is the
youngest action that maps a "correct" pre-state to an "incorrect" post-state. (Action A
is younger than action B if A is a descendant of B.) The user, not the debugging system,
decides whether an action's pre- or post-state is correct. The debugging system helps by
displaying the value of an object in an action's pre- or post-state on request from the
user.

Sometimes the bug becomes obvious once the user narrows it to an action; at other
times, it is not. If the bug is still not obvious after the fault has been narrowed to an
action, the user moves on to Phase Two. In this phase, the faulty action's code is re-
executed, using the data collected during the original computation to recreate the
action's history. A single thread of control is used when an action is retraced;
concurrent siblings are retraced in their serialization order. The user uses the usual
break-and-examine tools of sequential debugging (e.g., breakpointing and single-
stepping) on the single thread of control in the re-execution to isolate the bug. Because
we assume the action will perform the same when retried, the method is only suited to
deterministic programs.

4.1. Implementing the Method

In Argus, actions are guaranteed to be atomic only if they share atomic objects.
Atomic objects are objects that provide synchronization and recovery for actions that
access them. Atomic objects that are built into Argus use two-phase locking [16] for
concurrency control and back-up versions for recovery. Locks are automatically
acquired and versions automatically created when actions invoke operations on atomic
objects. The run-time system dispenses of an action's locks and versions appropriately
when the action terminates. Argus also supports user defined atomic objects.

We introduce timestamps and multiple versions into Argus so the debugging system
can provide values of atomic objects in an action's pre- and post- state, and can retrace
action histories. The recovery versions that are created for built-in atomic objects to
ensure action recovery on aborts are mainly what the debugging system needs. The
timestamps are generated with Lamport clocks [26] and are assigned to actions when the
actions terminate. Since Argus releases locks only when an action terminates, these
timestamps order the lock points of actions and give a valid serialization order [3], [161.
These timestamps, together with versions, can be used to give the pre- and post-values
of atomic objects for topactions as well as subactions, regardless of whether the actions
committed or aborted, and can be used to retrace an action's history in serial-walk
order. The thesis (110]) explains in detail how information is saved and how Lamport
clocks are used to order actions.

In the retrace, the appropriate portion of the program is re-executed. Even though
the same objects are referenced in the re-execution, "old" recovery versions are used so

137

PROGRAMMING METHODOLOGY

that a retrace of an action reads the same values as the original computation. A retrace
accesses only saved history in an object and, therefore, does not disrupt other actions.
Recovery versions and timestamps have been used in concurrency control; our work is
the first detailed design that uses them for debugging nested actions.

5. DISTRIBUTED VERSION MANAGEMENT FOR READ-ONLY
ACTIONS

One particularly useful kind of atomic action is a read-only action: an action that
reads, but does not modify, part of the state of the system. A read-only action can be
used to take a checkpoint of the system state for recovering from subsequent
catastrophic hardware or software failures, to audit a system (e.g., checking whether the
state is consistent), or simply to extract information about the current state of the
system. Indeed, many applications are characterized by a predominance of read-only
actions.

As noted by Lamport [251, traditional locking implementations (e.g., see [16]) of
atomic actions have difficulties with read-only actions. For example, a read-only action
that reads most or all of the system state may tie up a large part of the system for a
long time, possibly delaying many update actions. In addition, a read-only action that
lasts a long time may be likely to be aborted because of a deadlock or a hardware
failure, making it unlikely that the action will ever finish.

We have developed three new concurrency control protocols that permit read-only
actions to run without interfering with update actions or with each other. The
protocols make use of the semantic information that read-only actions make no changes
to the state of the system, and require read-only actions to be identified to the system
before they begin execution. The protocols are based on the idea of maintaining
multiple versions of the state of each object in the system, and having read-only actions
read old versions while update actions manipulate the "current" version. By preventing
interference between a read-only action and other actions, the protocols increase the
likelihood that a read-orily action will be able to complete successfully. In addition, the
performance of update actions is likely to be better when there is no interference from
read-only actions [7].

There are several problems that must be solved by a protocol that uses multiple
versions to prevent interference among read-only actions and other actions. For
example, one must be careful in selecting the old versions to be read by a given read-
only action to ensure that the state seen by the action is consistent. In this work we
have explored several different levels of consistency, and developed protocols that
achieve each. In addition, the need to save old versions to be read by read-only action.
introduces a storage management problem, namely how to determine that an old
version is no longer needed so that it can be discarded. In this work, we have focused
on protocols designed to operate in a distributed system -- one in which the state of the
system is distributed among a collection of nodes which communicate via messages --
and considered how to minimize the space needed for old versions of objects.

138

PROGRAMMING METHODOLOGY

In Section 5.1 below we discuss several possible correctness criteria. Then, in Section

5.2, we describe one of the protocols from [43]. Details of the other protocols and a

discussion of related work can be found in [43].

5.1. Correctness Criteria

We assume that users desire update actions to be serializable and recoverable. In

addition, we assume the existence of an invariant that defines the set of consistent

states of the system. Given this invariant, we assume that each update action, when

run alone and to completion, preserves consistency, and that the system starts in a

consistent state. Given these assumptions, we can imagine several possible requirements

for read-only actions.

First, we could require simply that the values read by each read-only action be

consistent. We call this requirement consistency. Consistency demands only that the

state seen by a read-only action satisfy the invariant, and not that it bear any

particular relation to the values actually written by update actions. It might seem that

this requirement is too weak to be useful; however, at least one proposed scheme [201

does not satisfy any stronger requirements. All of the protocols in [43] satisfy stronger,

more useful requirements.

Second, we could require that the values read by each read-only action be the result of

a serial execution of some subset of the update actions. We call this requirement
external consistency. External consistency is at least as strong a requirement as

consistency, because the result of a serial execution of update actions is always
consistent. In fact, it is a stronger requirement, because in a given computation not all

consistent states satisfy the requirement of being the result of a serial execution of some
subset of the update actions in the computation.

Finally, we could require serializability -- i.e.; all actions in a computation, both

updates and read-only actions, must be serializable as a group. As the following
example illustrates, serializability is a stronger requiremeut than external consistency.

Consider the following execution, involving two update actions, A and B, two read-only

actions, R and S, and two objects, X and Y, and assume that X and Y both start with

initial value 0:

Action A writes 1 into X.
Action B writes 1 into Y.
Action R reads 1 from X.
Action R reads 0 from Y.
Action S reads 0 from X.
Action S reads 1 from Y.

The values read by R are the result of a serial execution of the single action A, while
the values read by S are the result of a serial execution of the single action B. Thus,

139

PROGRAMMING METHODOLOGY

the execution is externally consistent. However, there is no single serial execution of all
four actions in which each read operation returns the most recent value written, so the
execution is not serializable.

From the point of view of trying to understand the interactions among actions in an
execution, or trying to reconcile the values read by two different read-only actions,
serializability is clearly preferable to external consistency. Hence, one might wonder
why external consistency is interesting. As discussed in [43], it can be cheaper to ensure
external consistency than to ensure serializability. For those applications that can
tolerate a weaker requirement, such as external consistency, the potential performance
gain could be significant.

In addition to the requirements above, we might also require the values read by a
read-only action to be reasonably current: they should reflect the modifications of at
least all update actions that finished before the read-only action started. This
requirement is useful because it rules out a trivial solution, in which we save a copy of
the initial state of the system, and read-only actions read from that copy. This trivial
solution, while it ensures serializability and prevents read-only actions from interfering
with update actions, is not useful for most applications.

5.2. A Protocol

In this section we present one of the three protocols from [43]. The state of the
system is contained in objects; each object provides operations by which actions can
read and update the object's state. (An object might be a node in the distributed
system, or part of the state at a node; we will not discuss here the factors involved in
choosing an appropriate granularity.) The protocol. requires that objects maintain
multiple versions of their state so that read-only actions can read old versions while new
updates continue to run using the current version. An important issue is how to
manage versions: when must a version be kept, and when can an old version be thrown
away? The problems of version management have a strong influence on the design of
the algorithms.

To simplify the presentation, we assume a simple model for objects, with each object
providing read and write operations. We also assume that two-phase locking [16] is
used for update actions, with exclusive locks used for write operations, and shared locks
for read operations. As discussed in [1], [40], [42], [44], greater concurrency among
update actions can be permitted if more information about the specification of each
object is used. The protocols presented here are easily adapted to use this kind of type-
specific information.

In addition, we assume that update actions use a two-phase commit protocol [21], [28]
and some form of crash-tolerant storage (e.g., stable storage [28]) to achieve resilience to
node failures. Our protocol works in part by piggybacking information on messages
used in the two-phase commit protocol.

140

PROGRAMMING METHODOLOGY

The protocol described here is similar to the protocols of [4], [8], [91, [151. It uses
timestamps and multiple versions to ensure serializability of all actions while permitting
a read-only action to run without interfering with other actions. Our contribution

consists of an "initiation phase" for read-only actions that allows us to tell when a
version might be needed by some read-only action. For some applications, however, the
communication cost of the initiation phase could be too high. The remaining two

protocols in [43] represent attempts to avoid this cost. Both work by a propagation

technique, analogous to that in [20]. The first ensures only external consistency, and is

relatively cheap. The second ensures serializability, but is more expensive.

The protocol described here combines timestamps and locking. Each action is

assigned a unique timestamp. Update actions are synchronized using ordinary two-

phase locking [16]. The timestamp for an update action is chosen as it commits; as
discussed below, care is taken to ensure that the timestamp order on committed update

actions is consistent with the partial order induced by the locking protocol. (Updates
that abort can be ignored; versions written by such updates are simply discarded.)

Read-only actions are handled differently: the timestamp for a read-only action is
chosen when it begins. When a read-only action with timestamp T attempts to read an
object, the version of the object written by the action with the largest timestamp less
than T is selected as the value to be returned by the read operation. The initiation
protocol for read-only actions, described below, ensures that objects retain the versions
needed by a read-only action while the action is active.

As noted above, operations invoked by update actions are processed using ordinary
two-phase locking: when an update action invokes a read operation on an object, it
first waits until it can lock the object in read mode, and then reads the most recently
written version. When an update action invokes a write operation, it locks the object in
write mode, and then creates a new version. If the action later aborts, the newly

created version will be discarded. For now, let us assume that if an update action
commits, all versions that it created will be retained forever. Shortly we will explain
how to retain only those versions that are actually needed by read-only actions, and
how to discard a version that is no longer needed.

To generate timestamps for update actions, we maintain a timestamp for each object.
The timestamp for object X represents the maximum of the timestamps of update
actions that have accessed X and committed, and the timestamps of read-only actions
that have accessed X (regardless of whether they have already committed). Timestamps
for update actions are generated as follows: during the first phase of the two-phase

commit protocol for an update action, the action collects the timestamps of all objects

that it accessed. (This is easily done by piggybacking the timestamps on the normal
messages of the two-phase commit protocol.) Upon receiving timestamps from all
accessed objects, the action chooses a unique timestamp greater than all the timestamps
received from the objects. Then, in the second phase of the commit protocol, the
chosen timestamp is broadcast to all objects (piggybacked on the message containing

the decision to commit). Each object, upon receiving this message, updates its

141

PROGRAMMING METHODOLOGY

timestamp to the maximum of its current value and the action's timestamp,2 marks any
versions written by the action with the action's timestamp, and then releases any locks

held by the action. It is easy to show that any conflicts between two update actions are

reflected in the relative order of their timestamps, and hence that updates are

serializable in timestamp order.

Timestamps are chosen for read-only actions using the following initiation protocol:
when a read-only action begins, it sends messages to all objects that it might access

asking for their current timestamps. When an object receives such a request, it records
the action's identifier along with the object's current timestamp. The object then
responds to the request with its current timestamp. After receiving responses from all
objects, the action chooses a unique timestamp greater than all the responses. The
timestamp recorded for the action at each object is thus a lower bound on the
timestamp chosen by the action. As we discuss below, this information is used in
deciding when to retain or discard a version.

When a read-only action with timestamp T invokes a read operation on an object, it
chooses the version of the object with the largest timestamp less than T. After finding
this version, the read operation updates the object's timestamp to the maximum of its
current value and the read-only action's timestamp, and then returns the version as the
value read. Updating the object's timestamp forces update actions that commit later to
choose timestamps larger than T, ensuring that the version that should be selected for
the read-only action does not change, and thus that all actions remain serializable in
timestamp order.

There is one potential race condition for which we must provide. When a read-only
action with timestamp T invokes a read operation on an object, an update action might
be in the middle of its commit protocol. Unless we can be sure that the timestamp that
will be chosen by the update will be greater than T, we cannot tell whether to read the
version written by the committing update or some earlier version. In this case, the
read-only action must wait until the update action finishes its commit protocol. We can
reduce the amount of waiting by recording, for each committing update action at the
object, the timestamp returned to it in the first phase of its commit protocol. This
timestamp gives a lower bound on the timestamp that will eventually be chosen by the
update action. The read-only action can proceed if its timestamp is less than the lower
bound for each committing update action.

It is easy to show that the above protocol ensures serializability. The protocol for
generating timestamps for update actions ensures that any conflicts between updates
will be reflected in the relative order of their timestamps. Read-only actions then read

2The object's current timestamp when it receives the commit message from an update action could be
greater than the timestamp chosen by the action if another action was executing its commit protocol at
the object concurrently.

142

PROGRAMMING METHODOLOGY

versions of objects consistent with all actions executing in timestamp order. Notice, in
addition, that the protocol ensures that read-only actions are given reasonably current
views: the version of an object read by a read-only action will be no older than the
version that was current at the time that the action initiated at the object.

To this point we have described the protocol as if all versions were retained forever.
We will now show how versions can be discarded when they are not needed by a read-
only action. Recall that each object keeps track of the read-only actions that have
initiated at the object, along with a lower bound on the timestamp chosen by each
action. Objects can use the following rule to decide which versions to keep and which
to discard: a version with timestamp T must be retained (1) if there is no version with
timestamp greater than T (in which case it is the current version and is needed for
update actions), or (2) if there is a version with timestamp Ti > T, and there is an
active read-only action whose timestamp might be between T and T1. By having a
read-only action inform objects when it completes, objects can discard versions that are
no longer needed. This process of informing objects that a read-only action has
completed need not be performed synchronously with the commit of the action. It
imposes some overhead on the system, but can be done by piggybacking information on
existing messages, or sending messages when the system load is low.

The protocol described here is effective at minimizing the amount of storage needed
for versions. For example, unlike the "version pool" scheme in [8], [9], it is not
necessary to discard a version that is needed by an active read-only action because
buffer space is being used by a version that no action wants to read. However, ensuring
that each object knows which versions are needed at any point in time has an associated
cost, namely the initiation phase for read-only actions. A read-only action cannot begin
executing until it has chosen a timestamp, a process that requires communicating with
all objects that it might access. If the set of objects that might be accessed by a read-
only action is relatively small, then the cost of initiation might not be too great.
However, if the set is large, or if it is difficult to predict (in which case the estimated set
must be large to be safe), then the initiation phase could be a performance bottleneck.
The other protocols described in [431 avoid the problems of an initiation phase.

6. REACHING APPROXIMATE AGREEMENT IN THE PRESENCE OF
FAULTS

In collaboration with Danny Dolev, Nancy Lynch, Shlomit Pinter, and Eugene Stark,
William Weihl developed new algorithms and lower bounds for the problem of reaching
approximate agreement in a distributed system with faulty processes. An earlier version
of this work appeared in 113]; the new algorithms and lower bounds appeared in [14].

In designing fault-tolerant distributed systems, one often encounters questions of
agreement among processes. In the Byzantine Generals problem [27], [37], the objective
is for nonfaulty processes to agree on a value, in spite of the presence of a small number
of "Byzantine" types of faults -- completely arbitrary, even possibly malicious,

143

PROGRAMMING METHODOLOGY

behavior. Several variations on the problem can be considered -- the model can be

synchronous or asynchronous, and either exact or approximate agreement can be

demanded. In this work, we consider a variant on the traditional Byzantine Generals

problem, in which processes start with arbitrary real values, and where approximate,

rather than exact, agreement is the desired goal. Approximate agreement can be used,
for example, for clock synchronization and for stabilization of input from sensors.

We assume a model in which processes can send messages containing arbitrary real

values, and can store arbitrary real values as well. We assume that each process starts

with an arbitrary real value. For any preassigned c > 0 (as small as desired), an

approximate agreement algorithm must satisfy the following two conditions:

* Agreement: All nonfaulty processes eventually halt with output values that

are within e of each other.

" Validity: The value output by each nonfaulty process must be in the range

of initial values of the nonfaulty processes.

Thus, in particular, if all nonfaulty processes should happen to start with the same

initial value, the final values are all required to be the same as the common initial
value. This is consistent with the usual requirements for Byzantine agreement
algorithms. However, should the nonfaulty processes start with different values, we do

not require that the nonfaulty processes agree on a unique final value.

We consider both synchronous and asynchronous versions of the problem. Systems in

which there is a finite bounded delay on the operations of the processes and on their
intercommunication are said to be synchronous. In such systems, unannounced process
deaths, as well as long delays, are considered to be faults. For synchronous systems, we
give a simple and rather efficient algorithm for achieving approximate agreement. This

algorithm works by successive approximation, with a provable convergence rate that
depends on the ratio between the number of faults and the total number of processes.
The algorithm is guaranteed to converge in the case where the total number of processes
is more than three times the number of possible faults. Termination is achieved using a
technique that ensures that all nonfaulty processes halt, but allows different processes to
terminate at different times.

For asynchronous systems, in which a very slow process cannot be distinguished from

a dead process, no exact agreement can be achieved [19], even if no malicious failures
occur [12]. An interesting contrast to the results in [12], [19] is our second algorithm,
which enables processes in an asynchronous system to get as close to agreement as one

chooses. Our algorithm for the asynchronous case also works by successive
approximation. In this case, however, the total number of processes required by the

algorithm is more than five times the number of possible faults. As in the synchronous
case, we achieve termination using a technique that ensures that all nonfaulty processes

halt, but permits different processes to terminate at different times. It is possible to

144

PROGRAMMING METHODOLOGY

achieve simultaneous termination in the synchronous case; the technique used for
simultaneous termination, however, does not extend to the asynchronous case.

Our algorithms to obtain approximate agreement are of a very simple form. Namely,
at each round until termination is reached, each process sends its latest value to all
processes (including itself). On receipt of a vector V of values, the process computes a
certain function f(V) as its next value. The function f is a kind of averaging function.
Here we use functions that are appropriate for handling t faults. We show that these
functions have particularly nice approximation behavior. In particular, we show that,
for algorithms of a particular form, no approximation function can provide uniformly
faster convergence than the functions used in this paper. An earlier paper [13]
presented similar algorithms, but used approximation functions that provided slower
convergence than achieved by the functions used in this paper.

For the synchronous case, it is not difficult to show that 3t + 1 processes are
necessary to solve the approximate agreement problem. The proof is an adaptation of
the lower bound proof in (271, and appears in [18]. For the asynchronous case, our
algorithm uses 5t+1 processes, which is not optimal. In fact, it appears possible to
reduce the number of processes to as few as 3t + 1. This reduction is obtained using a
more complex algorithm, based on some of the interesting ideas of [5]. This algorithm
has a slower rate of convergence than ours.

145

PROGRAMMING METHODOLOGY

References

1. Allchin, J. E. and McKendry, M. S. "Synchronization and Recovery of
Actions," in Proceedings of the Second Annual ACM Symposium on
Principles of Distributed Computing, 1983, 31-44.

2. Andrews, G. R. "Synchronizing Resources," ACM Transactions on
Programming Languages and Systems 8, 4 (October 1981), 405-43.

3. Bernstein, P. A. and Goodman, N. "Concurrency Control in Distributed
Database Systems," ACM Computing Surveys 13, 2 (June 1981), 185-221.

4. Bernstein, P. A. and Goodman, N. "Multiversion Concurrency Control --
Theory and Algorithms," ACM Transactions on Database Systems 8, 4
(December 1983), 465-483.

5. Bracha, G. "An Asynchronous L(n - 1)/3j -Resilient Consensus Protocol,"
Proceedings of the 8rd ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, August 1984, 154-162.

6. Brinch Hansen, P. "Distributed Processes: A Concurrent Programming
Concept," Communications of the ACM 21, 11 (November 1978), 934-941.

7. Carey, M. J., and Muhanna, W. A. "The Performance of Multi-version
Concurrency Control Algorithms," Computer Sciences Technical Report 550,
University of Wisconsin at Madison, 1984.

8. Chan, A., et al. "The Implementation of an Integrated Concurrency Control
and Recovery Scheme," ACM SIGMOD Conference on Management of Data,
1982, 184-191.

9. Chan, A. and Gray, R. "Implementing Distributed Read-Only
Transactions," IEEE Transactions on Software Engineering SE-11, 2
(February 1985), 205-212.

10. Chiu, S. Y. "Debugging Distributed Computations in a Nested Atomic
Action System," MIT/LCS/TR-327, MIT Laboratory for Computer Science,
Cambridge, MA, 1985.

11. Department of Defense. "Reference Manual for the ADA Programming
Language," Report ANSI/MIL-STD-1815A-1983, Washington, DC, 1983.

12. Dolev, D., Dwork, C., and Stockmeyer, L. "On the Minimal Synchronism
Needed for Distributed Consensus," Proceedings of 24th Annual
Symposium on Foundations of Computer Science, 1983, 393-402.

146

PROGRAMMING METHODOLOGY

13. Dolev, D., Lynch, N. A., Pinter, S., Stark, E. W. and Weihl,
W. E. "Reaching Approximate Agreement in the Presence of Faults,"
Proceedings of 8rd Annual IEEE Symposium on Reliability in Distributed
Software and Database Systems, 1983, 145-154.

14. Dolev, D., Lynch, N. A., Pinter, S., Stark, E. W. and Weihl,
W. E. "Reaching Approximate Agreement in the Presence of Faults,"
Journal of the ACM 88, 3 (July 1986), 499-516.

15. DuBourdieu, D.J. "Implementation of Distributed Transactions," in
Proceedings of the Sixth Berkeley Workshop on Distributed Data
Management and Computer Network, 1982, 81-94.

16. Eswaran, K. P., Gray, J. N., Lorie, R. A. and Traiger, I. L. "The Notions of
Consistency and Predicate Locks in a Database System," Communications
of the ACM 19, 11 (November 1976), 624-633.

17. Feldman, J. A. "High Level Programming for Distributed Computing,"
Communications of the ACM 22, 6 (June 1979), 353-368.

18. Fischer, M., Lynch, N. A. and Merritt, M. "Shifting Scenarios: Easy
Impossibility Proofs for Distributed Consensus Problems," submitted for
publication.

19. Fischer, M., Lynch, N. A. and Paterson, M. S. "Impossibility of Distributed
Consensus With One Faulty Process," Proceedings of 2nd ACM Symposium
on Principles of Database Systems, 1983.

20. Fischer, M. J., Griffeth, N. D. and Lynch, N. A. "Global States of a
Distributed System," IEEE Transactions on Software Engineering SE-8 3
(May 1982), 198-202.

21. Gray, J. "Notes on Database Operating Systems," Operating Systems -- An
Advanced Course, Lecture Notes in Computer Science 60. Berlin: Springer-
Verlag, 1978.

22. Haddon, B. K. "Nested Monitor Calls," ACM Operating Systems Review
11, 4 (October 1977), 18-23.

23. Herlihy, M. and Liskov, B. "A Value Transmission Method for Abstract
Data Types," ACM Transactions on Programming Languages and Systems
4, 4 (October 1982), 527-551.

24. Hoare, C. A. R. "Communicating Sequential Processes," Communications
of the ACM 21, 8 (August 1978), 666-677.

147

PROGRAMMING METHODOLOGY

25. Lamport, L. "Towards a Theory of Correctness for Multi-User Data Base
Systems," Report CA-7610-0712, Massachusetts Computer Associates, 1976.

26. Lamport, L. "Time, Clocks, and the Ordering of Events in a Distributed
Systems," Communications of the ACM 21, 7 (July 1978), 558-565.

27. Lamport, L., Shostak, R. and Pease, M. "The Byzantine Generals Problem,"
ACM Transactions on Programming Languages and Systems 4, 2, 1982,
382-401.

28. Lampson, B. "Atomic Transactions," in Distributed Systems: Architecture
and Implementation, Lecture Notes in Computer Science 105, (Ed.), Goos
and Hartmanis. Berlin: Springer-Verlag, 1981, 246-265.

29. Lauer, P. E. and Needham, R. M. "On the Duality of Operating Systems
Structures," Proceedings of the Second International Symposium on
Operating Systems Structures, 1978; also ACM Operating Systems Review
18, 2 (April 1979), 3-19.

30. Liskov, B. and Scheifler, R. W. "Guardians and Actions: Linguistic Support
for Robust, Distributed Programs," ACM Transactions on Programming
Languages and Systems 5, 3 (July 1983), 381-404. Also published as
Computation Structures Group Memo 210-1, MIT Laboratory for Computer
Science, Cambridge, MA, August 1982.

31. Liskov, B. and Herlihy, M. P. "Issues in Process and Communication
Structure for Distributed Programs," Proceedings of the Third Symposium
on Reliability in Distributed Software and Database Systems, 1983. Also
Programming Methodology Group Memo 38, MIT Laboratory for Computer
Science, Cambridge, MA, July 1983.

32. Liskov, B. "Overview of the Argus Language and System," Programming
Methodology Group Memo 40, MIT Laboratory for Computer Science,
Cambridge, MA, 1984.

33. Liskov, B., Herlihy, M. and Gilbert, L. "Limitations of Synchronous
Communication with Static Process Structure in Languages for Distributed
Computing," Proceedings of the 18th ACM SIGACT/SIGPLAN
Symposium on Principles of Programming Languages, January 1986. Also
Programming Methodology Group Memo 41-1, MIT Laboratory for
Computer Science, Cambridge, MA, October 1985.

34. Lister, A. "The Problem of Nested Monitor Calls," ACM Operating Systems
Review 11, 2 (July 1977), 5-7.

148

PROGRAMMING METHODOLOGY

35. Mitchell, J. G., Maybury, W. and Sweet, R. "Mesa Language Manual,
Version 5.0," Technical Report CSL-70-3, Xerox Palo Alto Research Center,
Palo Alto, CA, April 1979.

36. Nelson, B. "Remote Procedure Call," Technical Report CMU-CS-81-119,
Carnegie Mellon University, Pittsburgh, PA, 1981.

37. Pease, M., Shostak, R. and Lamport, L. "Reaching Agreement in the
Presence of Faults," Journal of the ACM 27, 2, 1980, 228-234.

38. Restivo, J. P. "Addition of Type Information to the Argus Debugger," S.M.
Thesis, MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, May 1985.

39. Saltzer, J. H., Reed, D. P. and Clark, D. D. "End-to-End Arguments in
System Design," ACM Transactions on Computer Systems 2, 4 (November
1984), 277-288.

40. Schwarz, P. and Spector, A. "Synchronizing Shared Abstract Types," ACM
Transactions on Computer Systems 2, 3 (August 1984).

41. Segall, Z. and Rudolph, L. "PIE -- A Programming and Instrumentation
Environment for Parallel Processing, Technical Report CMU-CS-85-128,
Carnegie Mellon University, Pittsburgh, PA, 1985.

42. Weihl, W. E. "Specification and Implementation of Atomic Data Types,"
MIT/LCS/TR-314, MIT Laboratory for Computer Science, Cambridge, MA,
1984.

43. Weihl, W. E. "Distributed Version Management for Read-Only Actions,"
Proceedings of the Fourth Annual ACM Symposium on Principles of
Distributed Computing, August 1985, 122-135.

44. Weihl, W. and Liskov, B. "Implementation of Resilient, Atomic Data
Types," ACM Transactions on Programming Languages and Systems 7, 2

(April 1985), 244-269.

Publications

1. Allen, L. W. "Design of a Kernel for Argus," Programming Methodology
Group Memo 43, MIT Laboratory for Computer Science, Cambridge, MA,
June 1985.

2. Dolev, D., Lynch, N. A., Pinter, S., Stark, E. W. and Weihl,
W. E. "Reaching Approximate Agreement in the Presence of Faults,"

149

PROGRAMMING METHODOLOGY

MIT/LCS/TM-276, MIT Laboratory for Computer Science, Cambridge, MA,
February 1985; also submitted for publication.

3. Liskov, B., Herlihy, M. P. and Gilbert, L. "Limitations of Remote Procedure
Call and Static Process Structure for Distributed Computing," Programming
Methodology Group Memo 41, MIT Laboratory for Computer Science,
Cambridge, MA, September 1984.

4. Weihl, W. E. "Data-dependent Concurrency Control and Recovery," ACM
SIGOPS Operating Systems Review, 19, 1 (January 1985); originally
published in Proceedings of the Second Annual ACM Symposium on
Principles of Distributed Computing, August 1983.

5. Weihl, W. E. "Distributed Version Management for Read-Only Actions,"
Programming Methodology Group Memo 44, MIT Laboratory for Computer
Science, Cambridge, MA, June 1985; also Proceedings of the Fourth Annual
ACM Symposium on Principles of Distributed Computing, to appear.

6. Weihl, W. E. "Atomic Data Types," IEEE Bulletin on Database
Engineering, June 1985.

7. Weihl, W. E. and Liskov, B. "Implementation of Resilient, Atomic Data
Types," ACM Transactions on Programming Languages and Systems, 7, 2
(April 1985), 244-269.

Theses Completed

1. Allen, Larry W. "Design of a Kernel for Argus," S.B. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge,
MA, May 1985.

2. Anderson, E. E. "Design of a Macintosh CLU Implementation," S.B. thesis,
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, January 1985.

3. Chiu, S. Y. "Debugging Distributed Computations in a Nested Atomic
Action System," Ph.D dissertation, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, December 1984.

Theses in Progress

1. Wagner, R. M. "Integrating Animation into a Programming Environment,"
S.M. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected September 1985.

150

PROGRAMMING METHODOLOGY

Talks

1. Liskov, B. "Argus: The Programming Language and System,"

State University of New York, Stony Brook, NY,
October 1984

Wang Institute of Graduate Studies, Tyngsboro, MA,
October 1984

University of Pennsylvania, Philadelphia, PA,
November 1984

University of Delaware, Newark, DE, April 1985

2. Liskov, B. "The Argus Language and System: Concepts and Issues, Argus

Features, Example, Subsystems, Implementation, User-defined Atomic Data

Types, Discussion," Advanced Course on Distributed Systems -- Methods

and Tools for Specification, Munich, Germany, April 1985.

151

REAL TIME SYSTEMS

Academic Staff

M.L. Dertouzos S.A. Ward, Group Leader
R.H. Halstead R.E. Zippel
C.J. Terman

Research Staff

D. Robinow J. Pezaris
D. Goddeau

Graduate Students

J. Arnold M. Ma
E. Bradley J. Miller
E. Burger P. Neves
S. Gray D. Nussbaum
C. Hoffman P. Nuth
M. Katz P. Osler
S. Ku S. Seda
J. Marantz L. Seiler
C. Kuhlman J. Sieber
S. Lau M. St. Pierre
W. Lau G. Waters

Undergraduate Students

V. Ali J. Loaiza
D. Becker A. Magnani
M. Blair A. Manzoor
E. Burger K. O'Neill
K. Briggs S. Raman
S. Cohen E. Siedman
R. Jenez A. Sieving
A. Kohli S. Solomon
B. Lim J. Vance

REAL IBM SY87E

W. Liske b. Wade

Support Staff

A. Forestell S. Thomas
J. Hoppe

Visitors

T. Goblick M. Shen
M. Hommel G. Zientara

U4'

REAL TIME SYSTEMS

1. INTRODUCTION

During the 1984-85 year, VLSI CAD tools and multiprocessor architectures have
continued as major research thrusts within RTS. The Nu and Trix projects have been

largely completed, and work toward a major new architectural project has begun.
Subsequent sections describe each of these activities.

2. SCHEMA

Our work on Schema is now beginning to bear fruit. Large portions of the system
have now reached usable states and we are beginning to 1) accommodate the work of
other CAD tool designers within Schema and 2) allowing patient designers to use the
system for design. In this section, we will describe the basic structure of Schema as it
now stands and point out some of the highlights of this year's work.

Schema is an environment for developing knowledge based, computer-aided design
tools for electronic systems. The three major goals of its design were:

1) Provide an integrated environment for all aspects of the synthesis and
analysis of electronic designs from MSI PC boards through circuit and mask
design of VLSI devices.

2) Simplify the development of these synthesis and analysis tools by
encouraging and supporting the construction of CAD tools from libraries of
standard routines, by using uniform data structures and by providing
libraries of advanced control structures appropriate for CAD development.

3) Allow the designer to delay making decisions until necessary; for example,
the technology (TTL, ECL, gate array or custom MOS) used in a logic
design need not be specified until timing simulations or physical design is
begun.

The key to achieving these goals is the development of an integrated design
environment where design tools can easily communicate and cooperate. This has been
achieved by the innovative software architecture used in the development of Schema.

Schema achieves coherence not by specifying the interchange formats that need to be
used between different CAD programs, but rather by specifying the data structures the
CAD programs should use. Schema specifies a set of abstract data types for dealing
with electronic designs, and a set of policies to be used when dealing with the new data
types. This approach provides a common layer on which different CAD tools may be
built, and it allows the CAD tools to invoke each other and cooperate easily by
interchanging pieces of electronic designs.

These data types are implemented in a message passing, object oriented programming
style called flavors. These structures represent circuit topologies and schematics, mask

155

REAL TIME SYSTEMS

artwork, floorplans, and simulation waveforms (both digital and analog). Circuit
topologies represent the connectivity of a circuit, schematics are representations of the

graphic images of a circuit that are drawn on paper. Since these structures are
instances of flavors, they also incorporate pieces of code, called message handlers, that
allow them to directly provide procedural functionality. That is, a transistor contains
the information and code required to display itself on the screen, write itself out to a file
or participate in a simulation. This raises the semantic level at which the CAD tools
deal with objects, simplifying their development. It also allows implementational and
operational decision to be delayed and even changed without modifying the code that
makes use of them.

2.1. Modules

The basic component of a design in Schema is a module. Each module consists of a
topology and several descriptions, e.g., schematics, icons, layouts, and simulation results.
Examples of modules in a design include: an inverter, a half adder, an arithmetic logic
unit, a data path, a cache, instruction fetch unit, and a memory system. Each of these
modules includes not only the schematic (and its corresponding topology), but also the
results of various tests that have been performed on the circuit (simulation results),
documentation and design notes, and physical specifications (VLSI layouts or PC board
designs). The modules represent a complete view of a design component.

The designer rarely interacts directly with the topology portion of a module, but
instead deals with the descriptions (schematics). The analysis tools (simulators, timing
verifiers and other consistency checkers) work with the topology, and usually use
descriptions only for communicating with the designer. The only major exceptions are
the physical design tools, VLSI layout system and wire wrap and PCS board systems
which, by necessity, must work with the physical descriptions.

The system ensures the topology remains consistent with the description edited by the
designer and warns him/her when two descriptions of a design become inconsistent by
the use of timestamps and limited edit trails. This division allows the electronic
designer to use the most appropriate mechanism for describing the design without
worrying about getting formats correct for the CAD tools, and the CAD tool designer
deals only with design descriptions that are both appropriate and "pre-parsed."

The topology and its descriptions are implemented as procedures, though they are
usually edited via one of the description editors: schematic, layout, or waveform. This
procedural structure, similar to the approach used in DPL allows a great deal of
flexibility parameterizing the different components and provides an excellent point at
which to install intelligent synthesis modules. For instance, in an earlier version of
Schema, this was used to implement an ALU module that chose different carry look-
ahead schemes depending on the width of the data word.

These procedures can also make use of other modules by a slightly stylized version of

156

REAL TIME SYSTEMS

procedure invocation. The system uses the context of the call to decide which
descriptions is appropriate. If a topology invokes another, a module then a sub-
topology is generated. When a schematic invokes another module, one of the module's
icons is inserted in the schematic. This basic mechanism issued to implement
hierarchical designs.

These hierarchical descriptions also incorporate a multiple viewpoint, or slides,
mechanism to allow simulation and analysis modules to annotate the topologies. The
multiple viewpoints are used to control the visibility of certain information to the CAD
tools. For instance, transient analysis programs like Spice want to be aware of parasitic
capacitances and resistances while a simple logic simulator might not. Rather than
generating the two different topologies for the different simulators, the same topology is
used for both, but the parasitics are only visible when the transient viewpoint is made
visible by Spice. This way, annotations to the topology made by the two simulators can
be easily examined by their counterparts.

2.2. Project/Module Hierarchy

The modules of a design are collected into a project, which in turn can be a
component of a larger project. For instance, there might be an L machine project
which is used to hold all the design components of the L machine. Several different
versions of the L machine might be designed, so there might be TTL, CMOS and
ECS sub-projects of the L machine. Then within the CMOS project, there might be
different projects to contain the design of the data path, control logic, and memory
management system. These main modules of each of these projects would be combined
by the main module contained in CMOS to produce the final chip.

Each designer maintains his or her own hierarchy of projects. The root of this
hierarchy is called portfolio. By having sub-projects point to the same save file,
designers can share projects. Figure 11-1 gives a screen image of Schema just as the
designer is making some modification to the memory system project. At the root of the
hierarchy is the Portfolio, which appears on the first line actual hierarchy listing. Below
it is the Demonstrations projects and then the L Machine save file of each Project or
module appears in the right hand column. The pop up menu in the middle of the
screen indicates various operations than can be performed on the Memory System
project.

157

REAL TIME SYSTEMS

.av* filW: Z: bli Pa. tioIsIu LM11.0,1-~ LIS. Ii Sp
tault direct<.ry: I:ZPri.oin~~~.MS

.nvlronme~nt: ben.aa.t. at iQ-. Cfl(Jt

Project Higrarchy
*Portfolio: Portiulso Z:'RZ'Schena-Init.Llsp

Project: titnnstrat suns SCHEMA: DEMOMSIRAIIONS; DEMOII1SIRATIOIIS.LXS6P.FIEUEST
*Project: L Machine 2:;RZ>Porttollo)L-Machlne.llsp
* Project: t:flOS Z:'RZ)Portfollo)L-Machlne>CMOS.lisp
* Module: Ir1-e Ch i p Z:,RbPortfolio)L-Mechlne>CMOS;The-thip.llsp
* Project; ALL) Z:)RZ'Portfolio)L-Machirt'CMOS,ALU.llsp
* ModulIe: Invea ter Z:)RZ)Por-tfolio)L-Mecfine)CMOS.ALU)Iruvertwr.llsp
* Project: Control Logic Z:,RZ>Por~tfollo>L-MlachmnteCMOS.Control-Loglc.lisP
* Project: Menoty S:.sten Z:,RZ)Portfolio>L-nachine>CMOS flenory-Systen.liep

* Project: ECI 2:9RZ.PortfolioL-aclr~e>ECL.11sp
* Project: TIL Z:)RZ)Por-tfollo)Lflacheine)ITL.lls0
Project: Stantias tnA--i,.,. SCHEMA: ENVIRONMENTS; STA1IDARD-EMUIROIIMEHItS
Env lronncnt: AlimiN;f SCHEMA: EI IROM1ME1ITS; AtiALOG-EFHVIROMiMEIIT .1ISP
Enviromnnet r''r, 1. -1r~mfhI~ LISP
Environnent - -_-__ - _ios1iwtai or1 Systen lIME1m LISP
Environnent Thi. Pr,:ec!? Cresre -lave File IIIMEIIT.LISP
Env ronnent -.,t, I Iw project View IME1I7 .L ISP

New module Edit
NtM w Wavellform-r Grouip Reload

Lit N. It biate Environiment Du1gip to
NL I %,t Load all

Edit pa, aselic
Exit - iump

lant. far net. sub PrCIJect ofCTJS e..-sttn

111L

Figure 11-1

158

REAL TIME SYSTEMS

2.3. Environments

By specifying an environment, designer makes precise what types of modules and tools
should be available for the design. Each environment consists of a collection of
primitive modules that may be used, command dispatch tables for the description
editors, design rules, simulation models, and so on. The environments themselves are
organized as a directed acyclic graph. At any time, the designer can refine the
environment being used. For instance, one could begin a design in the Basic Logic
environment and later when it had been decided to use CMOS, switch to the Generic
CMOS environment. Finally, when a foundry had been chosen, the Designer would
select an environment for the specific process to be used. While the environment was
Basic Logic, the designer would be able to draw logic schematics and simulation, but
would be unable to get any timing information (other than in gate delay units) or do
any circuit design. After switching to Generic CMOS, transistor level circuits and stick
diagrams could be developed. When the process specific environment has been chosen,
detailed masks could be designed and accurate timing information would be available.

2.4. Software Tools

Through most of the time the data structures needed by a CAD designer are already
in place, Schema also includes a large library of compatible flavors (abstract data types)
for constructing new structures. Within this library are mechanisms for dealing with
many different types of hierarchy, prototypes, "creation on demand", timestamping,
and so on. When creating a new data structure, the designer merely picks the flavors
that provide the functionality desired and includes his own customizations. This fine
grained modularity has helped maintain a high level of uniformity within the system.
The modularity techniques used are based on the Capsule ideas.

In addition, there is also a growing library of useful CAD oriented procedures that
may be drawn upon. Among them are sparse matrix routines, linear and non-linear
equation solvers, a moderate size symbolic algebra package, topological traversal
routines, two dimensional spatial management packages, and so on. The existence of
these packages has enabled CAD builders to build on each others' work more than in
previous systems. The totality of these tools, mechanisms and policies remove much of
the drudgery from CAD tool development and encourages tool developers to proceed in
a cooperative, cumulative fashion. For the electronic designer, it provides a uniform
environment, with uniform access to a wide variety of different synthesis and analysis
tools.

2.5. Example

Figure 11-2 gives an example of j he use of Schema to analyze a simple linear system.
The schematic of an RLC system was sketched in the left hand window and then the
user selected the item Transfer Function from the menu in the middle of the screen.

150

REAL TIME SYSTEMS

The user was then asked to indicate a driving voltage source and the load node, which

are now indicated by a shaded region and the cross respectively. At the bottom of the

screen is the exact voltage transfer function of the circuit. This calculation was

performed by a simple application of Kirchoff's current law at each node of the circuit

to construct a set of equations for the voltages, which is then solved. The polynomial

manipulation package simplifies this problem significantly.

160

REAL TIME SYSTEMS

Schematic of: RC Filter, Project: Analog Circuits, Center = (-2.0, 2.0) Scale 10.0

NI

- i ,6 U

JVIDUCTOR-1 : 0.091? IRESISToR-2: -"
iRESISTOR-1: ZO. %.iCRPRlTORI; 1.0e-6

ILde p11oA (pha, a)
Emi as, t R&Jis$,la) Uit D,"Spla.y . , r

I" LCN

Compile Help :' Hardcop Reipl y Re,.te -7J~l

52 I + ' R C, R F, + Rs

Figure 11-2

161

Cppne i e orBd Dp

REAL TIME SYSTEMS

The user was then asked to see a Bode plot of the circuit. For this, it was necessary
to assign values to the devices which has been done in the pop up menu. Two different
sets of Bode plots (for different sets of parameters) are shown in the pair of windows at
the right of the screen.

2.6. Milestones

Schema is currently being co-developed with G. Clark and M. MacDonald of Harris,
Inc. They have spearheaded the development of the physical design portion of Schema
and have made significant progress on the VLSI mask layout and PC board systems.
At MIT, we have been concentrating on the overall structure of the system and the
analysis tools. A fairly complete graphical waveform entry and editing system has been
developed and is being interfaced with remote Spice servers running on Vaxes. This is
also being primed to permit the RSIM and other simulators that run on the Lisp
Machine to cooperate with Schema. Interface modules for dealing with a new standard
interchange language EDIF are now being developed. We are anticipating our first
serious users of the system early this fall.

3. DATABASE ACCELERATOR

The Database Accelerator is a new project being jointly pursued by Profs. Reif and
Sodini of the Microelectronics Center and Prof. Zippel of LCS as part of the Smart
Memories Project. The project is aimed at the development of a special chip that will
speed up the database searches, pattern matching and solve various problems in
artificial intelligence. The device will be fabricated in the Microelectronics Center under
the supervision of Profs. Reif and Sodini.

There are three key ideas in the database accelerator architecture that distinguish it
from conventional content addressable memories. First, the data words in the DBA can
contain a don't care in any or all bit positions. Second, a generalized selector controls
which words in the array can participate in an operation. Third, a small state machine
is provided for each word for processing complicated sequences of matches. The
combination of these functions yields an architecture that is quite extensible and can be
used in a wide variety of applications.

A Database Accelerator consists of many lines. (MIT's Smart Memories Project is
developing a 2048 line, database accelerator chip. Database accelerator systems with
between 105 and 107 lines are feasible with current technology. Each of these lines
consists of a 32 bit data word, a small finite state machine, a selector. and some
additional select and decode logic. The DBA's operation is divided into four types of
cycles. A write cycle is used to write data into the 32 bit data word of one or more
lines in the DBA. During match cycles, a 32 bit match word is provided and compared
against the contents of each data word in the system, setting or clearing a match bit.
During operate cycles the match bit is combined with other bits to handle complex

162

REAL TIME SYSTEMS

matching operations. The readout cycle provides the address of a particular matched
word. Multiple readout cycles are needed when there is more than a single match.

Not all of the words of the CAM need to be involved in the operations. A selector
word indicates which lines are to participate. The selector word may consist of zeroes,
ones and don't cares. This allows a write operation to modify a single line, all of the
lines, or certain subsets of the lines in the DBA.

The database accelerator is built from many DBA chips. The detailed design and
fabrication of these devices is discussed in Wade's thesis. In this section we discuss
some of the issues to establish the feasibility of the concept. Next we describe the
memory cell and array structure. These circuits are responsible for the match cycle
operation. The following section describes the finite state machine that is used during
the operate cycles. And then we discuss the operation of the readout cycles.

3.1. Matching Capabilities

Each line of the DBA contains 32 content addressable memory cells. Each of these
cells is capable of storing three values--two for logic one and zero and a third state
denoted by X. We say that each cell contains a trit of information. In addition, these
cells incorporate a comparator that is used in the matching process. Each cell is
capable of comparing its contents with that of another trit on a 32 trit bus that is
shared among all the cells. Each position in the bus is also capable of holding the three
values: 0, 1 and X.

A word matches the quantity on the bus if, in each trit position, either the data word
and the bus word have the same value or one of them is an X.

Bit Bi

Al2 M11

Wige

Figure 11-3: Lea-Wade CAM cell

The cell we use is shown in Figure 11-4. It is a derivative of the cell developed by Lea
and modified by John Wade. It consists of four transistors that perform the bulk of the
operations of the cell, and an MOS diode that is used to eliminate sneak path problems.
Two data buses, Bit and Bit, run through the cell. These buses carry data to be
written into the cells and is also used to present the data to be matched against. A

163

REAL TIME SYSTEMS

word line is connected to the access devices M 1 and M3 ,and is used to select the words
to be written. Finally, a match line passes through the cell, AND-ing together the
results of each cell's comparison.

As a data storage device, the transistor pairs M 1-M 2 and M 3-M 4 each form a

conventional one transistor dynamic memory cell. Devices M and M 3 are the access
devices and M 2 and M4 are the storage capacitators. On write cycles, a particular word
is chosen, its wordline raised and the desired data is driven onto the Bit and Bit lines.
The access devices then charge or discharge the gate capacitances of transistors M 2 and
M 4 appropriately. Logic values one and zero are written driving the bit lines to
opposite supply rails. An X value can be written into the cell by driving both bit lines
low. The configuration with both gates charges is illegal since it shorts together two
lines. Logically it would correspond to a never match in the cell. Indeed, it can be
accommodated by adding an addition diode to the cell.

During match operations, transistors M 2 and M 4 form an equivalence gate that
discharges the match line to th. bit lines on mismatches. The diode D1 is used to
prevent sneak paths between cells of the same DBA line. Careful match sense amplifier
design could eliminate the need for this device.

Bit Bit

Match

M2 Y M 4

charged - discharged

M1 M3

MM4 Writ"

Figure 11-4: Operation of CAM cell during a match operation

In more detail, consider the case when a 1 is stored in the CAM cell as shown in
Figure 11-5. If the bit lines also indicate a 1 the match line will not be discharged. The
path through M4 to the low bit line is of very high resistance since M4 is turned off,
and the low impedance path to a bitline, through M 2 is to a high bit line. Thus this
cell will not discharge the match line. If a 0 were presented to the cell instead, then the
match line would be discharged through device M2 .

In summary, the cell can contain a 0 and 1 by having only one of its storage
transistors' gates charged at a time. It can contain a "don't care" (X) by discharging
both gates.

164

REAL TIME SYSTEMS

3.2. Finite State Machine

The finite state machines are organized as simple one bit data paths that are
connected in a linear, nearest neighbor fashion. Each date path contains a function
generator capable of performing any single bit boolean operation and a set of registers.
The function generator can take its input from e ther the (read only) match latch or a
set of single bit registers associated with each DBA line. In the initial designs we are
assuming four registers are associated with each line. In addition to these four, the
function generator can access the registers of the previous and succeeding lines of the
array. The result of the boolean operation can be written into any of the twelve
registers that can be used as sources.

to previous line

to next line

Figure 11-5: The DBA datapath

When focusing on a single line in the array, the registers associated with that line are
denoted by 0, 1, 2 and 3. These are called current registers. The registers associated
with the previous line are denoted by (:previousi) and those associated with the next
line by (:nexti). The function generator can be driven by the contents of any of the
current, previous or next registers. In addition this source is also used as the
destination of the function generator's result. The B source can be driven by either the
match latch or the current registers. This is illustrated in Figure 11-6.

By allowing the A side of the ALU to access the registers of the previous and following
word, arbitrary length match operations can be performed by using multiple cycles to
match against the different parts of the data word. The function generator can then be
used to AND together the results of these different matches.

It is not necessary or desirable for every line in the DBA to participate in every
operation specified for the datapath. Which lines participate is controlled by the
selector field of the operation. For a DBA system with 2n lines, the selector field is an

n-trit quantity that consists of zeroes, ones and don't cares. This word indicates which
lines in the DBA are to participate in the operation. If the selector consists solely of
don't cares (probably the most common situation) then every line of the DBA is
enabled. To perform a 64-bit match, one match operation is performed using a selector
of XYQXX QXXXO0 followed by an operation with selector set to CXQDCXQC XX1.

165

REAL TIME SYSTEMS

The results of these two operations are then ANDed together to determine the result of
a 64-bit match. Other patterns can be used for more devious calculations.

As mentioned, the output of the function generator is written into the register
specified by the A source. In addition, two global bits are set by ANDing and Offing
together the selected function generators' results. The AllMatches line is driven by the
AND of the outputs of all the selected function generators. The NoMatches line is
driven by the OR of the outputs of the selected function generators. Among other uses,
these signals can be used to implement arithmetic comparisons.

3.3. Read Out

The read out cycle is quite simple. As with all other operations, the selector field
controls which DBA lines participate in the operation. In most cases the selector field
will consist of all don't cares. The read out instruction indicates which of the four
register bits are to be examined. If only one DBA line contains a 1 in that register then
its address is presented, encoded in binary, to the pins. The register is then cleared. If
more than one register contains a 1 then the DBA line with the lowest address is
selected, its register cleared and address presented to the pins.

3.4. Milestones

To evaluate the viability of the database accelerator a simulator has been built that
emulates the operation of the DBA chips. This simulator allows us to test algorithms
that make use of DBA chips and explore the impact they will have on different
applications. The simulation is done in enough detail that we can examine different
ways of managing the DBA memory, and the impact of chip organizations on the
performance of the overall system. We expect to be using SCHEMA to design the
initial full DBA chips later this calendar year.

4. VLSI SIMULATION

The burgeoning interest in integrated circuit design has led to an increased demand
for timely, accurate circuit simulation. Due to capacity limitations of existing
simulation programs, this demand is increasingly difficult to satisfy, especially as circuit
sizes now routinely exceed the 100,000 transistor mark. Algorithmic improvements--e.g.,
relaxation-based circuit analysis and switch-level transistor models--have helped to close
the gap, but even these simulators fall short of providing the capacity that will be
required in the near future.

Digital circuit operation exhibits a high degree of locality, with each element of the
circuit operating only upon information local to that element. Terman and Arnold have
developed a framework for circuit simulation which takes advantage of the locality
inherent in circuit operation to achieve a high degree of parallelism. The strategy is to

166

REAL TIME SYSTEMS

map the circuit to be simulated onto the topology of the target multiprocessor such that
the parallelism of the simulation reflects the parallelism of the circuit. For simulation
on an n processor system, the circuit to be simulated is first broken into n subcircuits,
or partitions. Each partition is composed of one or more atomic units, e.g., gates or
subnets, where an atomic unit is the collection of local network information necessary
for the simulation algorithm to determine the value of a circuit node. Each processor is
then assigned the task of simulating one partition of the circuit.

To minimize communication and to guarantee a consistent view of the state of the
network across all processors, we enforce the restriction that the value of every node is
determined by exactly one partition. A. node may be either an input or an output of a
partition, but never both. If more than one partition were allowed to drive a particular
node, each partition would require information about the state of the other drivers to
determine the correct value of the node. By eliminating the possibility of multiple
drivers we eliminate the need for this non-local information and the extra
communication required to arbitrate such an agreement.

This is not as serious a restriction as it first appears. In an MOS circuit, it implies all
nodes connected through sources or drains of transistors, such as pullup and pulldown
chains and pass transistor logic, must reside in the same partition. Since such
structures are the components of higher level logic gates, it makes sense to keep them
close together. The only difficulty arises from long buses with many drivers. This case
results in a "bit slice" style of partitioning, where all of the drivers for one bit of the
bus reside in the same partition, but different bits may reside in separate partitions.
Since there tends to be relatively little communication from one bit to another, this
restriction actually obeys the natural decomposition of digital circuits.

Thus, the partitioning strategy seems to be a good one for several reasons:

e Circuit locality is unaffected by scale. The potential parallelism increases
linearly with the size of the circuit to be simulated.

s Since the simulation computation displays locality of reference, the
partitioning will not result in a large interpartition communication overhead.
In fact, most of the knowledge about the network can be distributed along
with the simulation.

* Most circuits have natural boundaries which can be used during the
partitioning process since successful designs must constrain communication
between submodules to meet routing and bandwidth requirements imposed
by the technology.

Ideally each partition could be simulated independently, keeping each of our n
processors busy doing useful calculations. We may fall short of this ideal for several
reasons:

167

REAL TIME SYSTEMS

1) Some partitions may be easier to simulate than others; the resulting lack of

balance in computation load may lead to some processors lying idle.

2) A node whose value is determined by one partition may be an input to one
or more "successor" partitions. This introduces a precedence constraint
among the partitions: the simulations of the successor partitions must
always lag behind the simulation of the original partition in order to ensure
that the correct value of the input is available.

The first problem can be ameliorated by improvements in the original circuit

partition; this is an area of active research and will not be pursued further here. The
second problem is addressed below.

Enforcing the precedence constraint represented by a node shared between two (or
more) partitions requires additional communication and can introduce delay in a poorly
balanced simulation. Feedback between two partitions creates a circular precedence
constraint, which can result in a forced synchronization of the simulation processes:
each partition in the feedback path cannot proceed with the simulation of time step t +
1 until all partitions have completed step t. However, if the value of all partition inputs
were known for all time, there would be no precedence constraints to enforce and each
partition could be simulated independently of the others. This suggests decoupling the
partitions by introducing a history buffer for each partition which encodes the value of
each input for all time. Simulation of a partition is then allowed to proceed based upon
the assumption that the current contents of its history buffer is correct.

When a partition changes the value of an output node, it sends a message to the other
partitions for which that node is an input. The receiving partitions use this information
to update their history buffers, and, if necessary, correct their simulations. In order to
correct a simulation to account for a change in the input history, we employ a
checkpointing and roll back strategy derived from the state restoration approach to
fault tolerance in distributed systems. As the simulation progresses, a partition
periodically stops what it is doing and takes a checkpoint of the current state of the
simulation. The checkpoint contains a record of all of the pieces of state in the
partition: the value of every node, all pending events, and any state information kept
by the simulation algorithm (e.g., the current simulated time). From this checkpoint,
the simulation of the partition can be completely restored to the saved state at any
future time, effectively rolling the simulation back to the time the checkpoint was
taken. The set of saved checkpoints forms a complete history of the simulation path
from the last system-wide resynchronization up to the current time.

When a partition receives an input change, one of two possible actions will occur. If
the simulated time of the input change is greater than the current time, a new event
representing the change is scheduled and simulation proceeds normally. However, if the
simulated time of the input change is less than the current time, the simulation is
"rolled back" to a point preceding the input change. This roll back operation is

168

REAL TIME SYSTEMS

accomplished by looking back through the checkpoint history to find the most recent
checkpoint taken prior to the scheduled time of the input change. The simulation state
is then restored from that checkpoint, a new event is scheduled for the input change,
and simulation is resumed from the new simulated time.

With the scheme outlined so far, it is still possible for two partitions with a circular
dependence to synchronize. If both partitions change shared nodes at the same
simulated time, each partition will force the other to roll back. To solve this problem,
we first make the following assertion about the nature of the simulation algorithm: the
elapsed simulated time between an input change and any resulting new events is
non-zero. This assertion can be guaranteed by proper partitioning of the network.
This restriction allows the simulation of a single time step to be sub-divided into two
distinct phases:

1) the processing of all internally generated events queued for the current
simulated time, including the propagation of output changes to other
partitions;

2) the processing of all externally generated input changes queued for the
current simulated time.

This in turn permits us to take a checkpoint between the two phases of the
simulation, after any output changes have been made and before any input changes
have been processed. Forward progress is assured if we can guarantee there will always
be a checkpoint at the right time.

The checkpointing strategy must meet the following constraints: the checkpoint must
contain all of the state necessary to completely restore the simulation; there must
always be at least one consistent state to fall back to; and it must be possible to make
forward progress in the event of unexpected synchronization. In addition to these
constraints, there are some less important but still desirable properties a checkpoint
strategy should have. For example, to prevent rolling back further than necessary, the
simulation should be checkpointed frequently. In the limit, a checkpoint at every time
step would eliminate redundant work. We would also like the checkpointing process to
be as inexpensive in both space and time as possible. There is a tradeoff between the
cost we are willing to pay when forced to roll back and the cost we are willing to pay
for checkpointing overhead.

We expect the communication between partitions in a statically well-partitioned
circuit to be clustered in time, e.g., around clock edges. This implies the probability of
receiving a node change is greatest immediately following a change, and decreases as the
time since the last change increases. The probability of roll back should follow a similar
pattern. Therefore, to reduce the amount of redundant simulation caused by rolling
back, we would like to have a high density of checkpoints in the vicinity of
communication clusters. If the dynamic balance of the partitioning is less than ideal,

169

REAL TIME SYSTEMS

some of the partitions will simulate faster than others. In this case, the amount of
redundant work forced upon the faster partitions by roll back is less critical, as they
will still catch up to and overtake the slower partitions. Hence, if the time since the
last roll back is large, we can afford to reduce the density of checkpoints.

These observations have led to a strategy of varying the frequency of checkpointing
with time. Following each resynchronization and each roll back, a checkpoint is taken
at every time step for the first several steps, thus ensuring forward progress as well as
providing a high density of checkpoints. As the simulation progresses, the number of
time steps between checkpoints is increased up to some maximum period. The longer
the simulation runs without rolling back, the lower the checkpoint density, and hence
the overhead, becomes. We have arbitrarily chosen to use an exponential decay
function for the frequency until we have a better model of the probability distributions
of interpartition communication.

In the last year, a prototype implementation of PRSIM was completed an
preliminary performance measurements were made. (PRSLM is a parallel circuit
simulator which employs the history and roll back mechanisms presented above; as the
name implies, PRSIM is based upon the RSIM algorithm. The initial implementation
was designed for the Concert multiprocessor, developed here at MIT.)

Performance measurements are most easily expressed in terms of the effective
speedup; for N processors this is defined to be t(N)/t(1) where t(N) is the time taken to
run a given experiment on N processors. The extra simulation incurred as a result of
roll back can be expressed in terms of the simulation efficiency, which is defined to be

-- events (1)/events (N) where events (N) is the number of events processed in an N
partition experiment. The following table shows measurements taken while simulating
a 64-bit adder circuit containing 2688 transistors and 1540 nodes:

N 77' Speedup

1 1.000 1.00
2 0.991 1.86
3 0.967 2.43
4 0.937 3.11
6 0.951 3.77

Arnold's thesis contains an expanded presentation of measurements taken from a
variety of experiments.

170

REAL TIME SYSTEMS

5. PARALLEL PROCESSING

Work on parallel processing has continued on several fronts. We have continued the
construction of the Concert multiprocessor hardware, along with investigation of the
performance characteristics of Concert-like architectures. The base of utility software
for Concert has continued to expand. The Multilisp parallel programming language has
been used for some small-scale application studies and has also been the subject of
continued development. During the past year, outside organizations have collaborated
in several aspects of this work.

5.1. The Concert Multiprocessor Testbed

During the past year, three RingBus Interface Boards (RIBs) were manufactured and
successfully connected together creating the first Concert system with more than one
Multibus. This represented a major milestone on the way toward building a full eight-
Multibus, 32-processor Concert system. As of this writing, the remaining five RIBs have
been built and await check-out. All remaining parts needed to populate a full Concert
machine have been ordered, and commissioning of the full-scale Concert multiprocessor
should be possible by the end of the summer.

Analytical models of Multibus and RingBus contention have been developed and
compared with simulation results. The models of Multibus performance have also been
tested experimentally. Among the conclusions of this work is that Multibus contention
is not likely to affect performance as long as programs are located in the local memory
of processors that execute them, but that RingBus contention can be significant in many
cases.

The software environment for development of programs to run on Concert has
continued to jell, with significant contributions by our industrial partners at Harris
Corp. The ROM bootstrap code and the library of subroutines that support
programming Concert in C have been reorganized to anticipate the full Concert with
many Multibuses, and to accommodate system-wide "servers" connecting to shared
resources. A file system server is now complete and working reliably. A network server
is under development, and a "terminal server" providing windows for the output of
different processes is planned.

5.2. Multilisp

The principal advance in the Multilisp system during the past year has been the
design and implementation of a debugger and exception handling system. A task that
encounters a problem can yield an "exception value", or error value, as its result,
instead of a normal v~lue. If another task touches the exception value, it too may be
aborted and yield an exception value as its result. This mechanism provides a solution
to the unique problems of exception propagation between tasks using the "futures"
mechanism of Multilisp. The implemented system also includes an interactive debugger
written in Multilisp.

171

REAL TIME SYSTEMS

Application programs written in Multilisp include several sorting procedures, an

interpreter for a logic programming language, (Solomon), a polynomial manipulation

package, and a gate-level digital logic simulator. Additionally, a partial implementation

of the QLAMBDA parallel Lisp programming language was constructed by building a

translator from QLAMBDA to Multilisp. Strategies were developed for automatically
inserting futures at suitable places in Pure Lisp programs. Several tools have been built
for gathering execution statistics of Multilisp programs.

Although many rough edges remain, a basic Multilisp system now exists that is
complete enough to experiment with reasonable application programs, and also to serve
as a base for further research into the systems aspects of parallel languages.

Accordingly, we have begun to consider not only the question of debugging and

exception handling, but also broadening the range of parallel algorithms that can be
expressed comfortably in Multilisp. There appear to be two sources of parallelism in

programs:

* Mandatory work - Often the precedence constraints among operations in a
program can be relaxed so that several operations can be performed in
parallel, and the results combined later.

e Speculative work - Additional work can be initiated, in an "eager" fashion,
on the assumption that it may prove relevant. Speculative tasks may of
course turn out to be irrelevant, in which case it is desirable to terminate
them.

The "futures" mechanism of Multilisp is useful in relaxing the precedence constraints
among the mandatory operations of a program, but Multilisp lacks some vital
ingredients for good support of speculative parallelism. In the presence of speculative
work, it is desirable for the system to understand which tasks are speculative and which
are mandatory, so that speculative tasks will not be executed to the exclusion of

mandatory ones. Some method is also needed for locating and cleanly terminating
speculative tasks that have become irrelevant.

Another problem with the current Multilisp implementation on Concert is that the
introduction of parallelism into programs involves too much overhead for small-to-
medium-grain use. A program heavily laden with futures may take four times as much
processor time to execute as the same program without futures. A "lazy"
implementation of futures that postpones or eliminates most task creation operations
may substantially reduce the overhead of using futures.

The coming year should see the development of facilities in Multilisp for speculative
parallelism, as well as the refinement of the debugging and exception handling
mechanism. Other system issues, such as input and output, also need to be addressed

at the language design level. At the implementation level, we expect to investigate ideas
such as lazy futures, as well as improved multiprocessor garbage collection algorithms.

172

REAL TIME SYSTEMS

5.3. Industrial Collaboration

The second full year of our collaboration with Harris Corp. has just been completed.
Highlights of their work are

" The building of the GCM, a crossbar-based replacement for the RingBus.
The GCM should exhibit higher performance and is now entering its
debugging phase. Ultimately, Harris expects to make a GCM available for
the M.I.T. version of Concert.

" The design of some performance measurement hardware for Concert. When
built, this hardware will also be made available to M.I.T.

* Development and improvement of several pieces of Concert utility software,
notably the file server and the ROM bootstrap monitor.

* Submission of a joint Harris/M.I.T. proposal to the DARPA strategic
Computing Program to build a second-generation multiprocessor called
SCAMP. Funding of this proposal now seems very likely.

The Multilisp effort has also engendered two other industrial collaborations:

" A group at Bolt, Beranek, and Newman has brought Multilisp up on BBN's
Butterfly multiprocessor. Although there are many areas where some tuning
would clearly lead to major performance improvements, Multilisp has run
successfully on Butterfly machines with as many as 128 processors.

" A group at MCC Corp. has used our Vax simulator for Multilisp to
experiment with introducing parallelism into the rule-based system

EMYCIN.

6. THE L COMPUTER ARCHITECTURE

The goal of this new research by Terman and Ward is the development of an effective
architectural basis for high-performance implementations of modern high-level software.
In contrast to conventional computer organizations, L is designed around assumptions of
(i) object-oriented storage and (ii) multiple parallel threads of control at its lowest
architectural levels. These assumptions allow direct hardware support for a
computational model which offers unique advantages both in the organization of
multiprocessor machines and in the implementation of advanced control and data
structures becoming popular in contemporary software.

The following paragraphs outline the current -- tentative -- model of computation
which we assume for L. It should be emphasized that the description is intended to
illuminate the architecture of L's low-level computational engine, rather than to
describe a programming model. Much of the mechanism referred to below is invisible to

173

REAL TIME SYSTEMS

the programmer, who typically deals with higher-level program and data constructs
which resolve, largely via compiler technology, into the primitives sketched here.

6.1. Chunks

The unit of storage in L is the chunk, a fixed-size block capable of holding a modest
number (viz. nine) of values; each such value may be scalar data or a chunk reference.
A single tag or reference bit associated with each value distinguishes chunk references
from scalar data. Although other runtime tags may be among the chunk data (and we
envision instruction-set support for doing so efficiently), the details of such typing are
currently left to compiler-enforced convention. The reference bit is the only run-time
type information whose integrity is guaranteed by the lowest-level execution model

One of the nine elements of each chunk is reserved to denote the type of the object
represented. Scalar type values are used to flag certain primitive chunk types (such as
those interpreted directly by the processor); higher-level types, such as user-defined type
extensions, may exploit references to arbitrary objects (e.g.) to type templates for data
structures). Each chunk may thus be viewed as a typed eight-tuple, whose elements
may themselves by chunks. All higher-level data and code objects are represented using
chunks; i.e, lists and strings as a linear chain of inter-referencing chunks, or arrays as
trees of branching factor 8.

Each chunk is named by a unique ID which is used when interacting with the memory
system. Unlike conventional Von Neuman architectures, a chunk ID in the L
architecture is not directly related to the current location of the chunk in memory.
Instead, the ID is used as a key to retrieve the desired data from a content-addressable
memory. This gives us the freedom to move the actual storage for a chunk to different
locations in the memory system; we can use this flexibility to cache a chunk close to the
processor(s) which reference it most frequently.

6.2. Computation State

The basic L processor, like conventional processors, may be viewed as a finite state
machine. Unlike conventional computers, however, the state of an L processor has been
engineered to fit neatly into a single chunk. As an immediate consequence, a
computation state may be encoded as a first-class data object, occupying a chunk. To
this end, one of the primitive chunk types in L is a computation state, or simply
STATE, which is the semantic equivalent of a full continuation.

The programming model supported by L plays heavily on the elevation of the
computation state to the status of a formal data type. Indeed, we view the L processor
state as external to the processor itself: the processor simply takes an input state, S,
and transforms it to a successor state S'.

Each STATE chunk has a scalar type identifying it as a computation state; the

174

REAL TIME SYSTEMS

processor will refuse chunks not so marked. The first value of each STATE chunk is a
scalar microstate word, containing prerequisite and code offset bit fields, to be
explained presently, and several miscellaneous additional status bits. The next value of
a STATE chunk, the code pointer, contains a reference to a CODE chunk, containing a
stream of pure instructions (possibly intermixed with pure data). The major function
performed by the L processor is the interpretation of consecutive instructions from each
CODE chunk.

The remaining six values of a STATE chunk are, so far as the low-level computation
model is concerned, unallocated. They play roughly the role of general registers in a
very simple conventional machine: compiler-enforced conventions will allocate them to
such functions as return linkage, environment pointers, static links, and temporaries.

6.3. Instruction Stream Coding

Each CODE chunk contains a modest number of simple instructions, which may
contain scalars and chunk references as (pure) immediate constants. Among the latter
are references to other CODE chunks, e.g. as operands of branches and simple calls.
Typical CODE chunks contain at least one such branch, identifying a successor chunk
in the instruction stream. As each CODE chunk typically contains several L
instructions, the code offset bits within the microstate value of a STATE chunk are
used in conjunctior, with the code pointer to identify the next instruction to be
executed.

Most L instructions are conventional 1-, 2-, and 3-address formats. Each operand
must be either a value within the current STATE chunk, or a value in some chunk
referenced by the current STATE. The L operand encoding thus provides for direct
access to data whose distance, in levels of indirection, is at most one from the current
state; access to more distant data requires multiple instructions. Additional instructions
provide for the allocation of new chunks, the activation of new computation states, and
for interaction with the external world.

Each L instruction may require, for its complete execution, access to one or several of
the chunks referenced by the current computation state. In order to (i) provide for
primitive program synchronization, and (ii) avoid unnecessary bottlenecks in critical
execution resources, each STATE contains prerequisite bits in its microstate value
which specify which referenced chunks must be locally accessible for the computation to
proceed. The prerequisite bits are managed explicitly by the program, and can specify
one of several kinds of access--e.g. shared (read-only), or exclusive (read-write)--for each
reference within the STATE chunk. The prerequisite bits afford us the guarantee that
no computation step will be attempted unless its prerequisites are satisfied and hence
the computation can proceed to the next step without delay. Moreover, since several
computation states which specify exclusive access to the same object cannot proceed
simultaneously, prerequisites provide rudiments from which higher-level synchronization
mechanism can be crafted.

175

REAL TIME SYSTEMS

6.4. Continuations and Multiple Threads

The abstract computational model engendered by the structure described thus far
consists of a dynamic, evolving network of inter-referencing chunks, some of which are
Identified as type STATE. At each step of the computation, some set of runnable
STATE chunks with non-conflicting prerequisites is selected to be advanced to successor
states. The STATE chunks so selected can then be advanced to their successor states in
any order, or simultaneously, since the respective computation steps are non-interacting.
The advancement of any state may lead to multiple successor states--effectively a fork
operation--to be spliced into the network in the vicinity of the parent. The capacity of
this scenario for unbounded numbers of threads of control, together with the explicit
coding of criteria for each to progress, reflects our aspiration to highly parallel L
implementations.

Nondeterminism enters the model in that the criteria for selection of computation
states to be advanced during a given step are deliberately underspecified. In a practical
multiprocessor L system, that selection would be constrained by limited resources (e.g.
processors) as well as by technology-dependent communication costs.

6.5. The L Engine

An L machine contains some number of L enginea interconnected, along with external
memory and devices, in a communications network of some kind. Each engine contains
a processor--the stateless FSM described earlier--coupled to some highly accessible local
memory used to cache a number of chunks. Very roughly, we envision each engine to
be consistent, in terms of complexity, with implementation as a single VLSI chip.

The local cache of an engine typically includes both STATE and data chunks.
Dedicated hardware recognizes runnable STATE chunks, and queues them for
advancement by the processor. The runnability criteria include verification that the
specified prerequisite chunks are accessible in the local cache, and (perhaps) buffering in
pipeline registers decoded address information needed to access them in a single
clockcycle. The goal is to maximize the rate of useful execution by the processor, by (i)
keeping its input queue full and (ii) reducing the cost of moving from the current
STATE to the next in the pipe virtually to zero.

An independent subsystem manages communication between the cache and the
external system. System-wide communication follows a split-transaction protocol,
consuming constant communication resources despite unbounded access times. A
STATE whose prerequisites are unsatisfied either waits in the cache while the needed
chunks are fetched, or is shipped to another engine (presumably one closer to the
missing resource). While we have plausible algorithms and speculative predictions
regarding heuristics for such decisions, we expect to perform substantial simulations
before these aspects of our implementation will gel.

178

REAL TIME SYSTEMS

6.6. L Status and Plans

L is currently an incomplete collection of novel but untried ideas. While we aspire to
their eventual implementation using state-of-the-art technology (e.g., in a ia ultiprocessor
system using custom VLSI processors) we expect to spend the next one to two years
exploring and refining architectural parameters using emulation and other "disposable"
implementation technologies.

We plan on an initial implementation using NuBus-based T.I. Explorers, re-
microcoded to emulate the L architecture. We hope to achieve performance
approaching that of conventional single-processor Lisp Machines, allowing us to
evaluation architectural alternatives using software benchmarks of realistic size and
functionality. Indeed, we look forward to an early L implementation whose
functionality and performance are adequate to serve as a tool for the L research itself:
compilers and other system software will be coded for an L processor. Among other
advantages, this approach (1) provides an opportunity to evaluate the semantic
advantages of the programming model proffered by L, and (2) accumulates a substantial
body of interesting benchmark software.

Subsequent prototype implementations are expected to address the multiprocessor
aspects of an L system, and will exploit the Laboratory's Multiprocessor Emulation
Facility. We expect the MEF implementation to draw heavily on earlier single-
processor prototypes, owning to their common basis on the TI processor. It is possible
that during this period, specific architectural features (such as metacaches or unique
memory subsystems) will be prototyped in hardware.

7. PERSONAL WORKSTATIONS

In a similarly-named section of last year's progress report, we related the delivery by
TI of 30 production Nu Machines per their agreement with us. While these machines
have been deployed within the Laboratory -- primarily running Trix within the RTS
Group -- TI has recently discontinued their manufacture and dissolved the Irvine Group
responsible for that product line. The funeral date passed with few tears shed, although
30 tombstones were left and may become a disposal item.

7.1. Trix

During the past year, Goddeau and Sieber brought the Nu implementation of our Trix
operating system to acceptable levels of performance and functionality. The current
Trix runs major Unix software packages, yet offers a level of network-wide coherence
unattainable using Unix: the network itself, including the distinction between local and
remote services, can be rendered entirely transparent by Trix.

Despite its technical advantages, modest efforts for direct transfer of Trix to industry
have been unsuccessful since the emergence of Unix as an interface standard.

177

REAL TIME SYSTEMS

Consequently, the Trix project is winding down; current Trix-related activity is
primarily publication of results rather than additional system development. We expect
that the ideas and technology pioneered in Trix will be influential in the development of
the LCS Common System and similar projects aimed at network-wide coherence.

7.2. The NuBus

The architectural basis of the Nu Machine -- the NuBus -- remains alive and well
within TI and elsewhere. The recently announced TI Explorer is NuBus-based, and we
expect additional products from TI and other manufacturers to add to the repertoire.
TI has, with our encouragement and participation, continued to promote the NuBus as
an industry standard. In addition to licensing the bus at a very nominal one-time fee
(shared with MIT), TI has devoted considerable energy -- along with some of our own --
toward the IEEE ratification of the NuBus as a standard. Barring unforeseen setbacks
(e.g., the departure of key individuals from TI) we expect the NuBus to have an IEEE
designation by next year's progress report.

The NuBus continues as an attractive basis for experimental multiprocessors at MIT
and elsewhere -- MEF and LCS and the SPUR project at Berkeley being examples.

178

THEORY OF COMPUTATION

Academic Staff

P. Elias A. Meyer
S. Goldwasser S. Micali
F.T. Leighton G. Miller
C. Leiserson R. Rivest, Group Leader
N. Lynch M. Sipser

Associates

F. Feldman L. Levin
P. Gacs W. Przytula
S. Homer S. Schwarz
E. Lander M. Wand
D. Lehmann

Graduate Students

B. Aiello D. Barrington B. Berger
R. Boppana V. Breazu T. Bui
J. Buss B. Chor T. Cormen
S. Cosmadakis P. Feldman D. Franzblau
B. Gasarch R. Greenberg J. Hastaad
R. Hirschfeld D. Jilk B. Kaliski
P. Klein M. Komachak D. Kornhauser
F.M. Maley S. Malitz M. Newman
M. O'Connor C. Phillips S. Rao
M. Reinhold A. Sherman P. Shor
S. Sur S. Trilling S.-M. Wu

L. Yedwab

Undergraduate Students

A. Ishii B. Maggs

Support Staff

A. Benford I. Radzihovsky
J. McNamara R. Spenser

THEORY OF COMPUTATION

L. Quinby K. Story

Visitors

A. Amir P. Kanellakis
B. Awerbuch M. Merritt
L. Berman J. Reif
C. Dwork

180

THEORY OF COMPUTATION

1. OVERVIEW

This section contains an alphabetized listing of faculty and research endeavors,
categorized by personal account. Some of the material for this preliminary group report
has been incorporated from the faculty personal statements.

2. INDIVIDUAL PROGRESS REPORTS

2.1. Ravi Boppana

This semester I did research in Boolean formulas and Expander graphs. In the area of
Boolean formulas, L. Valiant has a general method for converting probabilistic formulas
into deterministic ones without increasing the size by much. I showed that in fact,
Valiant's method is optimal in a certain sense, namely the blowup in size is best
possible.

In the area of Expander graphs, I have been trying to show that a random regular
graph has good eigenvalue properties. If this is true, it would lead to a good method for
generating graphs, and then efficiently checking that they are indeed expanders.

This semester I completed my second course of my minor. I am intending to submit a
Ph.D. thesis proposal, "Topics in Boolean Formulas," sometime this summer. This Fall
I will take my Area Exam.

2.2. Thang Bui

T. Bui completed his joint work with Profs. Tom Leighton and Mike Sipser on the
problem of devising a new graph bisection algorithm and analyzing its performance,
both analytically and experimentally. The result of this work is a new bisection
algorithm along with proofs that this algorithm works well for large, natural classes of
graphs. In particular, it is proved that if the algorithm returns a bisection then it is
guaranteed to be an optimal bisection. Furthermore, it is shown that for every fixed
(d>=3) and for almost all d-regular graphs on 2n vertices with bisection width b =

O(n**(1- (J/((d+l)/2)))) the algorithm finds the optimal bisection. The algorithm has
been implemented and tested, and found to be competitive or better than well known
bisection algorithms, such as Kernighan-Lin or simulated annealing.

2.3. Peter Elias

On-Line Adaptive Source Coding Algorithms. I am writing up two simple on-line
adaptive variable-length source coding schemes. In each scheme the encoder encodes
the next message selected from a message set M into a codeword selected from a prefix-
free set C of sequences, concatenating the result onto previous output. The decoder
receives the concatenation and decodes each message as soon as the last symbol of its

181

THEORY OF COMPUTATION

codeword is received. Either scheme can be used by encoders and decoders who know
the sets C and M and have agreed to an indexing of C in an order of increasing length
and of M in some standard order, but know nothing about probabilities of messages.
The schemes encode with an average codeword length not too much greater than that of
Huffman encoding, an optimal on-line nonadaptive scheme which requires exact advance
knowledge of message probabilities.

2.4. Ronald Greenberg

C. Leiserson and R. Greenberg have further improved their algorithm for on-line
routing of messages in the "fat-tree" interconnection network. This probabilistic
algorithm is novel in that it does not randomize in the choice of message paths or in the
operation of the switches, .t rather in the choice of whether or not to send a particular
message in a particular delivery cycle. The algorithm ensures that a set of messages, M,
can be routed with high probability within O(lambda(M)logjMj) delivery cycles, where
lambda(M) is the maximum over all communication links of the ratio of the number of
messages in M which must pass through the link to the capacity of the link. It is hoped
that this work may also have some applicability to routing networks other than "fat-
trees. "

2.5. F. Thomas Leighton

Professor Leighton is continuing research on several problems involving novel network
architectures, parallel computation, VLSI design and the development of algorithms for
NP-complete problems which provably work well on the average. Advances have been
made in several areas during the past six months. Highlights are described in the
following paragraphs.

In the algorithms area, Professors Leighton and Sipser, T. Bui and S. Chaudhuri
(University of Washington at Seattle) have developed graph bisection algorithms which
(provably) almost always find the minimum bisection of graphs with small bisections.
These algorithms perform dramatically better than known techniques for large classes of
relevant graphs. The work will form an important part of T. Bui's Ph.D thesis, which
should be completed by this summer.

In the area of fault-tolerant construction of VLSI networks, Professors Leighton and
Rosenberg (Duke University) and Dr. Chung (Bell Communications Research Labs) have
developed efficient algorithms and bounds for representing useful networks as a small
number of "stacks" of wires. As the stacks are easily implemented in VLSI, the results
make possible the efficient configuration of fault-free networks in environments that
contain defective components.

In related work, Professor Leighton and P. Shor (who is also expected to finish his
Ph.D thesis this summer) are very close to solving the grid matching problem. Roughly

182

THEORY OF COMPUTATION

stated, the probiem is to determine the expected minimum maximum edge length over
all perfect matchings of N random points to N fixed points that are arranged in a I N *
I N grid with unit spacing between consecutive rows and columns. Professors Leighton
and Leiserson proved an upper bound of O(log N) and a lower bound of Omega I log N
for this problem in their work on wafer-scale integration of systolic arrays in 1982.
Determination of the precise bound has remained a difficult and important open
problem ever since. It now appears that the exact bound for the grid matching problem
is theta(log**(3/4)N), improving both the upper and lower bounds. As a direct result of
this work, it will be possible to improve the best bounds known for the average case
behavior of algorithms for wafer-scale integration as well as for a variety of other
packing and assignment problems.

Professor Leighton and J. Hastad (a first year graduate student) are developing
efficient circuits for parallel division. Currently, the only known circuit that can
compute the N most significant bits of a quotient in O(log N) parallel steps require
Theta(N**5) processors. Preliminary work by Leighton and Hastad indicates that the
number of processors can be decreased to O(N**(I+epsilon)) where epsilon is an
arbitrarily small positive constant. Although not yet practical, the improvement in
hardware requirements is significant.

Professor Leighton and B. Berger (another first year graduate student) are developing
improved algorithms for 2-layer channel routing. Initial progress in this area suggests
that it may be possible to achieve the performance of the Baker-Bhatt-Leighton
Manhattan routing algorithm and the Rivest-Baratz-Miller knock-knee routing
algorithm with a single, simpler algorithm. More importantly, it appears that the new
algorithm can be extended to the unit-vertical-overlap model (in which wires can
overlap only for unit distance and only in the vertical direction) where a factor of two
in channel width can be saved. The factor of two is significant because the new
algorithm always routes 2-point net channels with width d+O(d) instead of the best
previously known bound of 2d-1. Here d denotes the density of the channel which, of
course, is a lower bound on channel width. The results also hold for multipoint net
problems, except that an additional factor of two in channel width is required.

2.6. Charles E. Leiserson

My research work continues to center on "fat-trees." My students and I have refined
the organization of fat-trees, discovered new efficient message routing techniques, and
broken ground in the design and analysis of parallel algorithms for fat-trees. I am also
continuing work on VLSI in general. Specifically, we are making progress in
understanding timing in synchronous circuits clocked by level-sensitive latches, we have
new algorithms for planar routing, routability testing, and compaction, we have
discovered computational geometry algorithms for computer-aided design that work well
in systems with limited primary memory, and we are studying VLSI designs for
switching bit-serial messages and have implemented two such designs.

183

THEORY OF COMPUTATION

C. Leiserson and R. Greenberg have discovered a good algorithm for on-line routing of
messages in the "fat-tree" interconnection network. This probabilistic algorithm is
novel in that it does not randomize in the choice of message paths or in the operation of
the switches, but rather in the choice of whether or not to send a particular message in
a particular delivery cycle. The algorithm ensures that a set M of messages can be
efficiently routed on an n-processor fat-tree. With high probability, the number of
delivery cycles required is O(lambda(M)+\lg n\lg\lg n), where lambda(M) is the
maximum over all communication links of the ratio of the number of messages in M
which must pass through the link to the capacity of the link.

B. Maggs and I have discovered an algorithm for computing a minimum spanning
forest of a graph which runs on a fat-tree architecture. The algorithm uses Eulerian
tours of components of the graph in order to bound the amount of communication
needed during execution of the algorithm.

I have been investigating the algorithms used to determine the clock period of MOS
circuitry, and I have discovered that many in the literature are incorrect, many are
exponential-time, and many combine these features. The problem is that MOS circuits
are typically clocked by level-sensitive latches, rather than edge-triggered latches as is
typical in TTL. It turns out that by using a little algorithmic graph theory,
determining the clock period of MOS circuits can be done in polynomial-time.

M. Maley and I have discovered new algorithms for routing and testing routability of
planar VLSI layouts. Miller has extended this work into an impressive theory of planar
routing and routability. By using ideas from topology such as covering spaces, he has
been able to prove a difficult theorem which reduces routability testing to checking
relatively few constraints between objects in a design. The proof is general in that it
incorporates most wiring models that have been studied in the literature or
implemented in design systems. He has also discovered polynomial-time algorithms for
optimally compacting VLSI layouts with automatic jog introduction, and he has
improved on the basic algorithm that is typically used to solve constraint systems in
normal compaction.

C. Phillips and I have discovered a new algorithm for determining connected
components of rectangles in the plane which provably works well in a system
environment where rectangles are stored in secondary memory. This algorithm easily
generalizes to multiple layers, and hence can be used to determine electrical connectivity
in a VLSI design rule checker. Cindy has also discovered new data structures for
representing overlapping intervals which are considerably simpler than previous data
structures.

We have designed and implemented two switches for bit-serial messages. One, built
by T. Cormen, is a hyperconcentrator switch which is capable of mapping messages
from many incom.,ag lines onto fewer outgoing lines. The other is a pseudorandom
permuter, built by C. Phillips, is a pseudorandom permuter which scrambles the order
of messages.

184

THEORY OF COMPUTATION

2.7. Albert R. Meyer

My research has mainly been on axiomatic and denotational semantics as a guide to
programming language understanding and design. Emphasis has been on
metamathematical results such as completeness and decidability of formal theories.
Principal subtopics include

* semantics and proof theory of ALGOL-like languages,

e generalized type structures, especially polymorphism, in programming
languages,

* model theory and decision problems for X-calculi

I have been supervising six Ph.D students (Mitchell, Breazu, Cosmadakis, McAllester,
Bercovici, Gasarch), one M.S. Student (Reinhold), and two Senior Theses (Kilian,
Hailperin).

My latest grant proposal is being generously funded for the next three years by the
standards of the NSF CS Theory Section -- which is to say, I must seek substantial
further funding, probably within the LCS DARPA grant.

2.8. Alan Sherman

A. Sherman has been investigating the relationship between algebraic and security
properties of cryptosystems. Sherman and Rivest have shown that any finite,
deterministic cryptosystem that generates a small group is vulnerable to a known-
plaintext that runs in I K time on the average, where K is the size of the keyspace. In
addition, they have developed a related statistical test to determine whether or not a
deterministic cryptosystem generates a small group. With B. Kaliski, they have applied
their test to the Data Encryption Standard (DES) using a combinations of software and
special-purpose hardware. Initial trials of their experiment show, with high confidence,
that DES does not generate a small group. Additional experiments are in progress to
test DES for other related algebraic weaknesses. Currently, Sherman is investigating
lower bounds on the time required to test a cryptosystem for various types of algebraic
weaknesses.

Sherman expects to complete his Ph.D. by August 31, 1985 and, in September, will
join the Computer Science faculty at Tufts University.

2.9. Peter Shor

P. Shor has been investigating the average-case behavior of bin packing algorithms.
In the case where the item sizes are uniformly distributed, he has derived much tighter
bounds on the wasted space produced by the algorithm First Fit than were previously

185

THEORY OF COMPUTATION

known, and has the exact answer, up to a constant, for the wasted space produced by
the algorithm Best Fit. He has also derived a lower bound for any on-line that shows
that on-line algorithms cannot do as well as off-line algorithms, and that Best Fit comes
within a small factor of being optimal among on-line algorithms. The same techniques
seem like they should be applicable to the grid matching problem, and Peter Shor and
Tom Leighton are investigating this.

2.10. Laura Yedwab

L. Yedwab will be completing her master thesis this summer. This culminates a year's
work on the theory of disjunctive sum of games and how it relates to the endgame of
GO. She plans to spend this fall trekking through Nepal. She will return to MIT in
the spring to start the Ph.D. program.

186

THEORY OF COMPUTATION

Publications

1. Baldwin, R. and Sherman, A.T. "How we solved the $100,000 Decipher
Puzzle," in preparation.

2. Berman, F., Leighton, F.T., Shor P. and Snyder, L. "Generalized Planar
Matching," MIT-VLSI Memo, Cambridge, MA, March 1985.

3. Breazu-Tannen, V. and Meyer, A.R. "Lambda Calculus with Constrained
Types," Proceedings of the Logic of Programs Workshop, June 1985,
Springer-Verlag, Lecture Notes in Computer Science, to appear.

4. Bruce, K.B., Meyer, A.R. and Mitchell, J.C. "The Semantics of Second-
Order Lambda Calculus," invited for special issue of Information and
Control (1985).

5. Bul, T., Chaudhuri, S., Leighton F.T. and Sipser, M. "Graph Bisection
Algorithms with Good Average Case Behavior," Proceedings of the 25th
Conference on the Foundations of Computer Science, October 1984,
181-192.

6. Buss J. and Shor, P. "On the Pagenumber of Planar Graphs," 16th Annual
Symposium on Theory of Computing, 98-100, 1984.

7. Chandra, A., Halpern, J.Y., Meyer, A.R. and Parikh, P. "Equations between
Regular Terms and an Application to Process Logic," to appear.

8. Chung, F.R.K., Leighton, F.T. and Rosenberg, A.L. "Embedding Graphs in
Books: A Layout Problem with Applications to VLSI Design," MIT-VLSI
Memo, Cambridge, MA, March 1985.

9. Kaliski, B.S., Rivest, R.L. and Sherman, A.T. "Is the Data Encryption
Standard a Grou1 ?" Proceedings of Eurocrypt '85, to appear.

10. Kaliski, B.S., Rivest, R. L. and Sherman, A.T. Is DES a Pure Cipher?
(Results of moc'e cycling experiments on DES)," submitted to Crypto '85.

11. Leighton, F.T. and A.L. Rosenberg, A.L. "Three-Dimensional Circuit
Layouts," MIT/LCS/TM-262, MIT Laboratory for Computer Science,
Cambridge, MA, September 1984.

12. Loui, M.C., Meyer, A.R., Halpern, J.Y. and Weise, D. "On Time Versus
Space III," submitted to Mathematical Systems Theory, (1985).

187

THEORY OF COMPUTATION

13. Meyer, A.R. and Tiuryn, J. "Equivalences Among Logics of Programs,"
Journal Computer and System Sciences, 29,2 (1984), 160-169.

14. Meyer, A.R. and Wand, M. "Continuation Semantics in Typed Lambda
Calculi," Proceedings of the Logic of Programs Workshop, June 1985,
Springer-Verlag, Lecture Notes in Computer Science, to appear.

15. Meyer, A.R. "Thirteen Puzzles in Programming Logic," Proceedings of the
Workshop on Formal Software Development: Combining Specification
Methods, Nyborg, Denmark, (May, 1984), D. Bjorner, (Ed.), Springer-Verlag,
Lecture Notes in Computer Science, to appear (1985).

16. Mitchell, J.C. and Meyer, A.R. "Second-order Logical Relations,"
Proceedings of the Logic of Programs Workshop, June 1985, Springer-
Verlag, Lecture Notes in Computer Science, to appear.

17. Sherman, A. T. "Cryptography and VLSI (a two-part dissertation):
I. Foundations for Secure Communications II. Placing Modules on a VLSI
Chip," thesis proposal, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, September 7, 1984.

18. Shor, P. "The Average-case Analysis of Some On-line Algorithms for Bin
Packing," 25th Symposium on Foundations of Computer Science, 193-200,
1984.

19. Sistla, A.P., Clarke, E.M., Francez, N. and Meyer, A.R. "Can Message
Buffers be Axiomatized in Linear Temporal Logic?", to appear, Information
and Control (1985).

Talks

1. Bui, T.

-- 25th FOCS, Florida, October. 1984.
-- MIT VLSI Research Review, MIT, Dec. 1984.

2. Leighton, F.T "Networks, Parallel Computation and VLSI," Special 2-
lecture series presented to the computer science department at the University
of Chicago in January, 1985, and to the Annual Southeastern Conference on
Combinatorics, Graph Theory and Computing in Boca Raton, February
1985.

3. Leighton, F.T. "The Average Case Behavior of Algorithms for VLSI, Bin
Packing and Dynamic Allocation," presented to the Oberwolfach Workshop
on Algorithms in Germany in November, 1984, to the IBM T.J. Watson
research center in November and to the MIT Math department in December.

188

THEORY OF COMPUTATION

4. Meyer, A.R. "The Complexity of Flow-Analysis: Application of a
Fundamental Theorem of Denotational Semantics," Logic and Semantics of
Programs Workshop, Bad Honnef, West Germany, March, 1985; MIT, Lab.

for Computer Science, April, 1985; Stanford University, Department of
Computer Science, April, 1985.

5. Meyer, A.R. "Logical Puzzles in Programming," Carnegie-Mellon University,
Distinguished Lecture in Computer Science, September, 1984; University of

Maryland, Distinguished Lecture in Computer Science, October, 1984;

Brandeis University, Department of Computer Science, November. 1984;

Yale University, Department of Computer Science, Dec. 1984; University of

California, Santa Cruz, Department of Computer Science, Jan. 1985;

University of Texas, Austin, Department of Computer Science, May, 1985.

6. Meyer, A.R. "The State of the Logic of State," Workshop on Formal
Software Development: Combining Specification Methods, Nyborg,

Denmark, May, 1984.

7. Meyer, A.R. "Lambda-calculus and Computer Science," University of Pisa,
Italy, Computer Science Department, June, 1984; University of Maryland,
Department of Mathematics, October, 1984.

8. Meyer, A.R. "What Makes the Free-list free?," Workshop on Formal
Software Development: Combining Specification Methods, Nyborg,
Denmark, May 1984; SRI, Palo Alto, CA, April, 1985.

9. Sherman, A.T. "Is the Data Encryption Standard a Group?" Eurocrypt 85,
April 10, 1985, Linz, Austria.

10. Sherman, A.T. "Two Recent Cryptologic Results: I. Is the Data Encryption
Standard a Group? II. How we solved the $100,000 Decipher Puzzle,"
invited talk, Brandeis University, April 18, 1985, Waltham, Massachusetts.

189

THEORY OF DISTRIBUTED SYSTEMS

Academic Staff

N. A. Lynch, Group Leader

Graduate Students

B. Bloom E. Stark
B. Coan M. Tuttle
J. Lundelius

Support Staff

E. Pothier

Visitors

B. Awerbuch P. Kanellakis
C. Dwork M. Merritt

THEORY OF DISTRIBUTED SYSTEMS

1. OVERVIEW

Members of the Theory of Distributed Systems group worked on a variety of problems
related to distributed computing. The activities of its members are summarized in the
following individual reports.

2. INDIVIDUAL PROGRESS REPORTS

2.1. Baruch Awerbuch

My research has been focused on the field of distributed computation in
communication networks. The main emphasis was put on the following problems:

1) distributed shortest paths computation

2) coin-flipping in unreliable networks

3) detection and resolution of deadlocks

A more detailed description is given below.

1) The research on shortest paths in networks was conducted jointly with
R. Gallager. This problem arises in relation with the problem of efficient
routing of messages towards a certain destination node. We have proposed a
number of algorithms, whose complexities are close to optimal.

2) A problem of flipping a fair common coin in unreliable networks was
investigated jointly with B. Chor, S. Goldwasser and S. Micali. This is a
very fundamental problem since many existing protocols rely heavily upon
existence of such a coin, while no satisfactory solution has been proposed so
far. In this research, we have proposed a new efficient protocol for coin
flipping that produces a provably fair coin in presence of malicious
adversaries. Our solution strongly uses cryptography. However,
cryptographic assumptions needed in the protocol are very weak. Namely,
we assume that trapdoor functions exist. This is the weakest possible
assumptions because otherwise cryptography is useless.

3) Together with S. Micali, we have investigated the problem of detection and
resolution of deadlocks in communication networks. Efficient solution of
this problem will result in improved performances of communication
networks. However, no such efficient solution is currently known. The main
contribution of our research is a new protocol for deadlock resolution which
is much more efficient than the existing protocols.

Work in progress includes: "How Local is Maximal Matching?" with 0. Goldreich.

192

THEORY OF DISTRIBUTED SYSTEMS

2.2. Bard Bloom

Multi-Writer Atomic Registers: Shared-variable multiprocessor algorithms often
assume that any processor can read from and write to any shared variable; and that
writes and reads cannot overlap. Unfortunately, it is hard to make real memory with
these properties. It is somewhat easier to make memory which one processor can write
to and arbitrary numbers can read from safely. I have developed an algorithm to
simulate two-writer memory with two sets of one-writer memory, with a fairly small
overhead.

Theoretical Artificial Intelligence with R. Rivest: We are trying to develop a theory of
Al, hopefully bearing the same relation to AI that automata and complexity theory do
to the rest of computer science. At the moment, we are investigating learning, under
what circumstances is learning possible? reasonable? a good strategy? We have found
several types of worlds in which learning is good, and a few in which it is not.

Denotational Semantics of Concurrency (with N. Lynch and A. Meyer). At the
moment, we are trying to catch up with the people who have been working on
semantics for the last dozen years.

2.3. Brian A. Coan

I have continued my work on fault-tolerant distributed algorithms. There are three
principal areas of progress reported below.

First, the work reported last year on efficient randomized Byzantine agreement
algorithms has been concluded. The results of this work are reported in a joint paper
with B. Chor [2]. We developed a new randomized Byzantine agreement algorithm.
The algorithm operates in a synchronous fully-connected system of n processors, at most
t of which may fail. The algorithm terminates after an expected O(t/ log n) rounds of
message exchange. This performance is further improved to a constant expected
number of rounds if the distribution of processor failures is assumed to be uniform. In
either event, the algorithm improves on the known lower bounds for rounds for
deterministic algorithms. This algorithm may be of practical interest because it is both
simple and efficient.

Second, I have been working with D. Dolev, C. Dwork, and L. Stockmeyer on the
distributed firing squad problem. For a discussion of this work see the progress report
of Cynthia Dwork.

Third, I have been working on upper bounds on communication requirements for
fault-tolerant distributed algorithms. 14] The technique I have devised works for various
fault models: fail-stop, failure-by-omission, and Byzantine. Specifically, the technique
is a two-step transformation. The first step is a transformation into a well known [71
communication-inefficient canonical form in which each processor, at each round,

193

THEORY OF DISTRIBUTED SYSTEMS

broadcasts its entire state. The second step is a new transformation from this
communication-inefficient canonical form to to a communication-efficient canonical
form. For each fault model there is a separate transformation. The transformation in
the Byzantine model is fully worked out. I am currently attempting to devise other
more efficient transformations for the two less severe fault models.

As a corollary to the results in the Byzantine fault model, I obtained a major new
result about the communication requirements of Byzantine agreement. This new result
is a polynomial-message Byzantine agreement algorithm that uses about half the rounds
of communication used by any other polynomial-message algorithm.

2.4. Cynthia Dwork

Research

(1) Deterministic Distributed Firing Squad (with B. Coan, D. Dolev, and
L. Stockmeyer)

Most fault-tolerant distributed algorithms assume a "synchronous system", in which
processing is divided into rounds of message exchange. This assumption is justified by
the impossibility results of Fischer, Lynch, and Patterson; and Dolev, Dwork, and
Stockmeyer, which show that if the system is asynchronous then there is no protocol for
distributed agreement tolerant to even one benign processor failure. Another common
assumption is that all processors begin the algorithm simultaneously, i.e., in the same
round. In an actual distributed system in which different transactions and algorithms
may be executed periodically, this may be unrealistic. Typically an algorithm is
executed in response to some external request made to a specific processor. If the given
processor is correct then all correct processors learn of the request simultaneously, so
they can indeed begin the algorithm in unison. However, if the processor is faulty then
the correct processors may learn of the requested transaction at different times, if at all.
We were able to justify the design assumption of simultaneous starts. Specifically, we
obtained algorithms to solve the associated synchronization problem, which we call the
"distributed firing squad" problem (abbreviated DFS).

In addition to the two standard fault models of fail-stop and authenticated Byzantine
behavior we considered two new types of faulty behavior. In "rushing" a malicious
faulty processor can receive, process and re-send messages "between" the synchronous
steps of other processors. In the "timing fault" model faulty processors follow their
transition functions precisely but may take steps at irregular times and/or may
experience slight delays or accelerations in communicating with the other processors.
The unauthenticated Byzantine model has been studied by Burns and Lynch, who have
found a way of transforming any agreement protocol in this model into a DFS protocol.
We obtained the converse reduction for the fail-stop model.

Our principal results are:

194

THEORY OF DISTRIBUTED SYSTEMS

tight bounds on the running time required to solve DFS in the fail-
stop, authenticated Byzantine, and rushing models;

tight bounds on the number of processors required to solve DFS in
the fail-stop, timing fault, and rushing models.

(2) Randomized Distributed Firing Squad (with B. Coan)

DFS appears implicitly in work of Rabin. He had an algorithm for reaching consensus
whose expected running time was constant. However, unlike previous consensus
algorithms, his allowed correct processors to make their decisions at different rounds.
The implicit question was, Does there exist an algorithm for achieving simultaneity that
runs in time strictly less than O(t) (the lower bound for agreement in a deterministic
algorithm)? We have answered this question negatively: we have shown that not only
is there no "fast" deterministic firing squad algorithm, but there is not even a
randomized DFS algorithm whose expected running time is less than t+1 rounds, where
the expectation is taken over the coin flip sequences.

Work in Progress

(3) Unification and Term Matching (with P. Kanellakik and L. Stockmeyer)

We have strengthened the results in "On the Sequential Nature of Unification"
(Dwork, Kanellakis, and Mitchell). We have shown certain interesting special cases of
unification to be complete for P with respect to log-space reductions. We are currently
searching for a more processor-efficient parallel algorithm for one-way unification or
term matching, as well as trying to obtain lower bounds on this measure. We are also
searching for tighter lower bounds on congruence closure.

(4) Knowledge and Common Knowledge in the Presence of Faults (with Y. Moses)

We have been extending the work of Halpern and Moses on knowledge and common
knowledge in distributed systems to describe states of knowledge in a system in which
processors can fail. We have obtained a new, very intuitive proof of the lower bound on
rounds required to reach agreement. We are currently examining how states of
knowledge are affected by properties of the communications media of the system.

2.5. Paris C. Kanellakis

Research

(1) "Partition Semantics for Relations," with S.S. Cosmadakis, P.C. Kanellakis,
N. Spyratos.

We use set-theoretic partitions to provide models for relation schemes, relations and
dependencies. Our new point of view of the relational model demonstrates that there is

195

THEORY OF DISTRIBUTED SYSTEMS

a natural extension of functional dependencies (FD's), which is based on the duality
between product and sum of partitions. These partition dependencies (PD's) have the
power to express both functional determination and transitive closure of undirected
graphs. The inference problem of PD's is shown to be the uniform word problem in a
lattice. We provide a polynomial time algorithm for this natural generalization of the
FD inference problem. We show how partition semantics justify a number of variants of
the weak instance assumption and investigate the expressive power of PD's. We also
provide a polynomial time test for consistency of a set of relations with a set of PD's.

(2) "On the Analysis of Cooperation and Antagonism in Networks of Communicating
Processes," with P.C. Kanellakis and S.A. Smolka.

We propose a new method for the analysis of cooperative and antagonistic properties
of communicating finite state processes (FSP's). This algebraic technique is based on a
composition operator and the notion of "possibility equivalence" among FSP's. We
demonstrate its utility by showing that potential blocking, lockout, and termination can
be efficiently decided for loosely connected networks of tree FSP's. If not all acyclic
FSP's are trees, then the cooperative propert;ies become NP-complete and the
antagonistic ones PSPACE-complete. For tightly coupled networks of tree FSP's, we
also have NP-hardness. For the considerably harder cyclic process case, we provide a
natural extension of the method as well as a subcase reducible to integer programming
with a constant number of variables.

(3) "Equational Theories and Database Constraints," with S.S. Cosmadakis and P.C.
Kanellakis.

We present a novel way to formulate database dependencies as sentences of first-order
logic, using equational statements instead of Horn clauses. Dependency implication is
directly reduced to equational implication. Our approach is powerful enough to express
functional and inclusion dependencies, which are the most common database
constraints. We present a new proof procedure for these dependencies. We use our
equational formulation to derive new upper and lower bounds for the complexity of
their implication problems. The conceptual contribution is the merging of two different
subareas of computer science: database logic and equational theories. Our approach
also extends to algebraic dependencies, (see Ph.D. thesis by S.S. Cosmadakis).

(4) "Two Applications of Equational Theories to Database Theory," with S.S.
Cosmadakis and P.C. Kanellakis.

This is a description of some of the results of 1) above for lattices, and some of the
potentially useful transformations of 3) above. We have used 3) to experiment with
J. Guttag's REVE system for functional and inclusion statements. We describe our
experiments with the Knuth-Bendix procedure, which attempts to compile database
constraints into a rewrite-rule system (this is a much more useful and manageable form
for describing constraints). Surprisingly REVE compiled every hard example of

196.

THEORY OF DISTRIBUTED SYSTEMS

functionai and inclusion dependencies we provided. We believe that conventional
equational theorem provers can be used to manipulate logical database constraints in an
(practically) efficient fashion.

(5) "ISIS: Interface for a Semantic Information System," with K.J. Goldman, S.A.
Goldmann, P.C. Kanellakis, S.B. Zdonik.

ISIS is an experimental system for graphically manipulating a database. The system
is based on a simply specified high-level semantic data model. It demonstrates the
capabilities of a workstation environment by integrating three aspects of database
programming in one graphical setting. Namely, it allows browsing at the schema and
data levels, it provides a graphical query language, and it permits direct manipulation
of the schema. In all these activities it treats data and schema uniformly.

(6) "On Term-Matching and Unification," with C. Dwork and L. Stockmeyer.

We have obtained a more efficient (under certain representation assumptions) parallel
algorithm for one-way unification or term matching. This is the basic operation for
term rewriting, and is becoming quite popular with the PROLOG community. Tighter
lower bounds on unification on terms, and congruence closure have also been obtained.
We are currently working on lower bounds for the matching problem.

(7) "On AC Unification," with A. Chandra.

AC-unification is NP-hard. This is a joint observation with A. Chandra. (AC-
matching is NP-complete). For many AC-operators (associative commutative symbols,
that do not interact with each other) it is non-trivial to show that the problem is
decidable, (this is a result by one of G. Huet's students). At present trying to show that
problem is in NP. Also working on showing that for any number of AC and
Idempotent operators unification is in PTIME.

(8) "The Classification of Recursive Rules"

An important open problem in database theory is the classification of recursive queries
(i.e., queries in PROLOG without function symbols). If we consider each query Q fixed,
and the database D as the variable input then evaluation of each Q for any D is in
PTIME. The open question is deciding which cases can be evaluated in the parallel class
NC. Some preliminary results have been derived in this area.

2.6. Jennifer Lundelius

I finished my master's thesis, which concerned synchronizing clocks in a distributed
computer system. We assume that the processes are distributed, fully connected for
communication, and communicate only by sending messages. Message delays fall within
a known range. Each process has a real-time clock, which is subject to a small rate of
drift.

197

THEORY OF DISTRIBUTED SYSTEMS

The first result in the thesis is a lower bound on how closely the clocks can be

synchronized, even if the clocks all run at a perfect rate, and there are no faulty
processes, as long as there is some uncertainty in how long a message takes to be

delivered. The intuition behind the proof is that in two executions of any clock

synchronization algorithm, clock values can be different, but that fact can be masked

by an appropriate change in the message delays. We use this technique of altering
executions to obtain constraints on the closeness of synchronization to produce the lower
bound. A simple algorithm, which synchronizes the clocks to within the lower bound, is
included to show that the bound is tight.

The thesis also includes algorithms to synchronize clocks in the more realistic case
where clocks can drift and some percentage of the processes can fail arbitrarily. The

maintenance algorithm, used when clocks are initially synchronized, works by correcting
for drift every so often. At each round, processes exchange clock values, compute a
function of the values received, and update their clocks. The choice of function is
crucial. If the algorithm is to tolerate f faulty processes, then there must be more than
3f processes altogether. The function consists of discarding the f highest and f lowest
values and taking the midpoint of the rest. The use of this algorithm allows the clock
values to stay close together, keeps the clock values close to real time, and makes it easy
for a repaired process to become synchronized with the rest of the system.

The second algorithm presented in the thesis can be used when clock values begin
arbitrarily far apart. The same basic idea as in the maintenance algorithm is employed.
Since each round of the maintenance algorithm cuts the differences between the clock
values roughly in half, successive rounds cause repeated halving of the differences, and
will bring the clocks closer and closer. The only problem is knowing when to start each

round. In order to solve this problem, an extra phase is inserted in each round to
synchronize the beginning of the next round.

Work currently in progress concerns studying the capabilities that time gives in a

distributed computation. For example, when clocks are used to provide timeouts in a
communication protocol, the failure of a channel to deliver a message can be detected.
Essentially, time is being used to implement the failure-detection mechanism. Similarly,
in many distributed transaction systems, timestamps provide a total order on some set
of messages. Further study may show if it is easier to argue the correctness of protocols
using the abstraction rather than the implementation.

A related area to investigate is that of modeling distributed systems that fall between
the purely synchronous and purely asynchronous. Each system that uses time can be
considered an example of a semi-synchronous model. What are the relationships
between different models? Are there natural problems that separate the models into
stronger and weaker ones?

!08

THEORY OF DISTRIBUTED SYSTEMS

2.7. Nancy Lynch

During this year, I worked on the following problems:

(1) Electing a leader in a synchronous ring.

With G. Frederickson, I developed a lower bound for the number of messages required
to distinguish a unique processor in a synchronous ring of processors [8]. This new
result shows that a large amount of communication is required to break symmetry, for
arbitrary ring sizes, even if the size of the ring is known to all of the processors. There
are two parts to this work: (a) a general theory which shows that certain information
flow is necessary to distinguish processors whose sets of neighbors have "similar"
identifiers, and (b) a combinatorial result that shows that rings of arbitrary sizes can be
constructed in which many processors have such "similar" neighborhoods.

(2) Easy impossibility proofs for distributed consensus problems.

With M. Fischer and Michael Merritt, I developed easy new proofs of the impossibility
of solving several consensus problems (Byzantine agreement, weak agreement, Byzantine
firing squad, approximate agreement and clock synchronization) in certain
communication graphs 112]. We showed that, in the presence of m faults, no solution to
these problems exists for communication graphs with fewer than 3m+1 nodes or less
than 2m+1 connectivity. While some of these results had previously been proved, the
new proofs are much simpler, provide considerably more insight, apply to more general
models of computation, and (particularly in the case of clock synchronization)
significantly strengthen the results.

(3) Byzantine firing squad.

With J. Burns, I developed a fault-tolerant algorithm for a distributed synchronization
problem i1]. Our "algorithm" is really a famil- of algorithms, derived via a simple
transformation from arbitrary Byzantine agreement algorithms.

(4) Consensus in partially synchronous systems.

C. Dwork, L. Stockmeyer and I defined some very simple models for partially
synchronous distributed systems [6]. (Partially synchronous models are between the
usual synchronous and asynchronous models.) We were able to use these models directly
for describing solutions to consensus problems. Results that we had previously obtained
for many other models then follow via simulation results. Thus, these models provide a
very useful and simplifying intermediate step in describing a class of apparently

complicated distributed algorithms.

(5) Reliable broadcast protocols.

With H. Garcia-Molina, I designed a collection of reliable broadcast protocols for use

in unreliable networks [9]. One of our protocols is currently being implemented at

log

THEORY OF DISTRIBUTED SYSTEMS

Computer Corporation of America for use in their new highly-available distributed

system.

(6) Completing old work.

(a) Jennifer Lundelius and I reformulated our results on limitations of the closeness
within which software clocks can be synchronized 19]. The reformulation is in terms of a
simpler and more general model than we had previously used.

(b) B. Weihl and I completed our work on the problem of reaching approximate
agreement in a distributed system [5]. B. Coan and A. Fekete (a student from my
Distributed Algorithms course) helped us to solve some of the remaining problems.

(c) N. Griffeth, L. Guibas, M. Fischer and I finally completed our difficult work on
probabilistic analysis of a network resource allocation algorithm [11].

(d) I completed my paper on concurrency control for resilient nested transactions[10.

Several projects are now in progress:

I have been thinking about correctness conditions for distributed systems of the new
type being proposed by Computer Corporation of America. These systems are designed
to be highly available, fault-tolerant and fast. Unfortunately, they do not satisfy the
usual strong correctness conditions which are guaranteed by conventional concurrency
control algorithms. I am trying to determine what interesting correctness conditions
this system does satisfy, so that an application designer will be able to make effective
use of such a system.

With M. Merritt, P. Kanellakis and B. Weihl, I have been trying to develop a

framework for understanding concurrency control algorithms. The framework we have
in mind uses simulations of alternative executions. This work has proved to be very

difficult.

M. Tuttle and I have been carrying out a proof of an interesting distributed resource
allocation algorithm using levels of abstraction in a very natural and fruitful way.

B. Awerbuch, M. Fischer and I have been examining consensus problems in networks
in which the communication links are unreliable.

Other work during the year included continued development of my new graduate
course in "Distributed Algorithms", service on the STOC Symposium Program
Committee, and service on the NSF Division of Computer Research Advisory
Committee.

200

THEORY OF DISTRIBUTED SYSTEMS

2.8. Michael Merritt

(1) Easy Impossibility Proofs for Distributed Consensus.

M. Fischer (Yale), N. Lynch and I examined impossibility results for a variety of
agreement problems in unreliable environments. Our paper, "Easy Impossibility Proofs
for Distributed Consensus Problems," makes use of properties of graph coverings to
obtain a number of results in a clear, simple way. Many of these results were previously
known, but with awkward and lengthy proofs. We are able to unify this work, and
obtain some important new results in the area of clock synchronization.

(2) Expected Time to Reach Agreement.

Probabilistic algorithms have been found to have excellent average behavior for a
variety of applications. Work at MIT, Harvard and Cornell has applied this technique
to the problem of reaching agreement in unreliable systems. B. Chor, D. Shmoys
(Harvard) and I have found several simple algorithms which reach agreement in
constant expected time, and which work in different failure models.

(3) The Orphan Problem.

In nested transactions systems (such as ARGUS, here at NUT), 'orphans' can be
created when high-level actions abort, and their subtransactions continue processing.
Managing these orphans involves detecting and aborting them before they have a
chance to see inconsistent data. Work in ARGUS has focused on implementing such
management, although the problem has not been well understood. N. Lynch and I are
developing a model for nested transaction systems which will allow a clear formulation
of the correctness issues involved. We expect to argue the correctness of a number of
algorithms developed at MT, and hope to be able to address performance issues.

(4) Diagnosis Problems.

T. Dahbura (Bell Telephone Laboratories) and I have been exploring a generalization
of the diagnosis problem he addressed in his thesis. We are exploring the problem of
agreeing on a set of faulty processors in a network in which some processors test others,
and the rest communicate over a communication network of varying topology. We both
have a strong feeling that the diagnosis and agreement problems are related, and hope
that this work will allow us to state the precise relationship underlying this intuition.

2.9. Mark R. Tuttle

Tuttle has spent the majority of his first year studying techniques for verifying the
correct behavior of distributed algorithms. The vast majority of the techniques he has
studied have tried to create a logical framework in which to reason about the
correctness of the algorithm. Most of the techniques use predicate calculus to make
statements about the state of each process at certain points in their execution. More

201

THEORY OF DISTRIBUTED SYSTEMS

recently Tuttle has been looking for ways to extend work done by N. Lynch, G. Stark,
and J. Goree in which the algorithm is studied at varying levels of abstraction. At each
level of abstraction one defines an algebra consisting of a set of states and a set of
partial operations on the states. Algebras lower on the scale of abstraction are mapped
up to more abstract algebras in a way that ensures that any behavior that can be
exhibited in the lower algebra can be simulated at the higher level until the level of
abstraction is high enough that one may reason about the behavior of the algorithm at
a very conceptual level without concerning himself with the details of implementation.
This technique has the advantage of conceptual simplicity which allows a person to use
her intuition to construct a formal proof. The investigator may satisfy herself that the
algorithm exhibits certain local properties and then use these properties to verify the
algorithm while avoiding the tyranny of detail seen in some of the techniques in the
literature. Currently, Tuttle is using this technique to verify the correctness of an
interesting arbiter algorithm. In the future, Tuttle intends to continue the study of
verification and to look into resource allocation and communications problems.

Tuttle spent the second semester of this year as a teaching assistant in 6.004
Computational Structures, the undergraduate computer architecture course, and as a
laboratory assistant in the digital logic lab for the same course.

202

THEORY OF DISTRIBUTED SYSTEMS

References

1. Burns, J. and Lynch, N. "The Byzantine Firing Squad Problem"

2. Chor, B. and Coan, B. A. "A Simple and Efficient Randomized Byzantine
Agreement Algorithm," Proceedings 4th Symposium on Reliability in
Distributed Software and Database Systems 1984, 98-106, selected for
republication in IEEE Transactions on Software Engineering, June 1985.

3. Coan, B. A., Dolev, D., Dwork, C. and Stockmeyer, L. "The Distributed
Firing Squad Problem," Proceedings of the 17th ACM Symposium on
Theory of Computing, May 1985, 335-345.

4. Coan, B. A. "Communication-Efficient Canonical Forms for Fault-Tolerant
Distributed Algorithms," manuscript in progress.

5. Dolev, D., Lynch, N., Pinter, S., and Stark, W. "Reaching Approximate
Agreement in the Presence of Faults," to appear Journal of the ACM.

6. Dwork, C., Lynch, N. and Stockmeyer, L. "Consensus in the Presence of
Partial Synchrony", Proceedings of 8rd ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, Vancouver, B.C.,
Canada, August 1984, 103-118.

7. Fischer, M. and Lynch, N. "A Lower Bound for the Time to Assure
Interactive Consistency," Information Processing Letters 14(4) (1982).

8. Frederickson, G. and Lynch, N. "A General Lower Bound For Electing a
Leader In a Ring"

9. Garcia-Molina, H. and Lynch, N. "Reliable Broadcast Protocols for
Unreliable Networks," Computer Corporation of America internal memo.
Lundelius, J. and Lynch, N. "An Upper and Lower Bound for Clock
Synchronization", to appear in Information and Control.

10. Lynch, N. "Concurrency Control for Resilient Nested Transactions," to
appear in The Theory of Databases.

11. Lynch, N., Griffeth, N., Fischer, M. and Guibas, L. "Probabilistic Analysis
of a Network Resource Allocation Algorithm," to appear in Information
and Control.

12. Merritt, M., Fischer, M. and Lynch, N. "Easy Impossibility Proofs for
Distributed Consensus Problems," has been accepted at the Principles of

203

THEORY OF DISTRIBUTED SYSTEMS

Distributed Computation conference this August, and was invited to appear
in the first issue of a new journal, Distributed Computing.

Publications

1. Awerbuch, B. "A New Distributed Depth-First Search Algorithm," to appear
in Information Processing Letters.

2. Awerbuch, B. "An Efficient Network Synchronization Protocol," to appear
in Journal of the ACM.

3. Awerbuch, B., Chor, B., Goldwasser, S. and Micali, S. "Provably Secure
Coin in a Byzantine Environment," to appear.

4. Awerbuch, B. and Gallager, R. "Distributed Breadth-First-Search
Algorithms," to appear.

5. Awerbuch, B. and Micali, S. "Complexity of Resolution and Detection of
Deadlocks," to appear

6. Awerbuch, B. "Reducing complexities of distributed Maximum Flow and
Breadth-First Search Algorithms by means of Network Synchronization," to
appear in Networks.

7. Awerbuch, B. and Gallager, R. "Communication Complexity of Distributed
Shortest Path Algorithms," submitted to the IEEE Transactions on
Information Theory.

8. Awerbuch, B. "An Efficient Network Synchronization Protocol,"
Proceedings of the 16th Annual ACM Symposium on Theory of
Computing, Washington, DC, April 1984, 522-525.

9. Awerbuch, B., Chor, B., Goldwasser, S. and Micali, S. "Provably Secure
Coin in a Byzantine Environment," to appear in Publication to Conference.

10. Awerbuch, B. and Even, S. "Efficient and Reliable Broadcast is Achievable
in an Eventually-Connected Network," Proceedings of 3rd ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, Vancouver,
B.C., Canada, August 1984, 278-281.

11. Awerbuch, B., Israeli, A. a.d Shiloach, Y. "Finding Euler Circuits in
Logarithmic Parallel Time," Proceedings of the 16th Annual ACM
Symposium on Theory of Computing, Washington, DC, April 1984, 249-257.

12. Burns, J. and Lynch, N. "The Byzantine Firing Squad Problem," to appear.

204

THEORY OF DISTRIBUTED SYSTEMS

13. Chor, B. and Coan, B. A. "A Simple ai'd Efficient Randomized Byzantine
Agreement Algorithm," Proceedings 4th Symposium on Reliability in
Distributed Software and Database Systems 1984, 98-106, selected for
republication in IEEE Transactions on Software Engineering, June 1985.

14. Coan, B. A., Dolev, D., Dwork, C. and Stockmeyer, L. "The Distributed
Firing Squad Problem," Proceedings of the 17th ACM Symposium on
Theory of Computing, May 1085, 335-345.

15. Dolev, D., Dwork, C. and Stockmeyer, L. "On the Minimal Synchronism
Needed for Distributed Consensus," submitted to JACM.

16. Dolev, D., Lynch, N., Pinter, S., and Stark, W. "Reaching Approximate
Agreement in the Presence of Faults," to appear Journal of the ACM.

17. Dwork, C., Lynch, N. and Stockmeyer, L. "Consensus in the Presence of
Partial Synchrony," Proceedings of 3rd ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, Vancouver, B.C.,
Canada, August 1984, 103-118.

18. Dwork, C., and Skeen, D. "Patterns of Communication in Consensus
Protocols," Proceedings of 8rd ACM SIGACT-SIGOPS Symposium on
Principlet of Distributed Computing, Vancouver, B.C., Canada, August
1984, 143-153.

19. Frederickson, G. and Lynch, N. "A General Lower Bound For Electing a
Leader In a Ring," to appear.

20. Kanellakis, P. C. and Papadimitriou, C. H. "The Complexity of Distributed
Concurrency Control," SIAM Journal of Computing, 14, 1, February 1085,
52-75.

21. Kanellakis, P. C. and Smolka, S. A. "On the Analysis of Cooperation and
Antagonism in Networks of Communicating Processes," Proceedi. gs 4th
ACM SIGACT-SIGOPS Principles of Distributed Computing, (August
1985, to appear).

22. Kanellakis, P. C. and Cosmadakis, S. S. "Equational Theories and Database
Constraints," Proceedings 17th i"etual ACM Symposium on Theory of
Computing, Providence, RI, May 1085.

23. Kanellakis, P. C. and Cosmadakis, S. S. "Two Applications of Equational
Theories to Database Theory," Proceedings First International Conference
on Rewriting Technique8 and Applications, May 1985.

205

THEORY OF DISTRIBUTED SYSTEMS

24. Kanellakis, P. C., Cosmadakis, S. S. and Spyratos, N. "Partition Semantics
for Relations," Proceedings 4th ACM SIGACT-SIGMOD PODS, March
1985. Submitted to JCSS, special issue on the 4th PODS conference (J.D.
Ullman, editor).

25. Kanellakis, P. C., Goldman, K. J., Goldman, S. A. and Zdonik, S. B. "ISIS:
Interface for a Semantic Information System," Proceedings ACM SIGMOD,
May 1985.

26. Lundelius, J. and Lynch, N. "A New Fault-Tolerant Algorithm for Clock
Synchronization," Proceedings of the Third Annual ACM Symposium on
Principles of Distributed Computing, Vancouver, B.C., Canada, August
1984, 75-88. Lundelius, J. and Lynch, N. "An Upper and Lower Bound for
Clock Synchronization", to appear in Information and Control.

27. Lynch, N. "Concurrency Control for Resilient Nested Transactions," to
appear in The Theory of Databases.

28. Lynch, N., Griffeth, N., Fischer, M. and Guibas, L. "Probabilistic Analysis
of a Network Resource Allocation Algorithm," to appear in Information
and Control.

29. Merritt, M., Chor, B. and Shmoys, D. "Simple Constant-Time Consensus
Protocols in Realistic Failure Models: Extended Abstract," has been
accepted at the Proceedings 4th ACM SIGACT-SIGOPS Principles of
Distributed Computation conference this August.

30. Merritt, M. "Elections in the Presence of Faults," Proceedings of 8rd ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
Vancouver, B.C., Canada, August 1984, 134-142.

31. Merritt, M. J. and Mitchell, D. P. "A Distributed Algorithm for Deadlock
Detection and Resolution," Proceedings of 3rd ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, Vancouver, B.C.,
Canada, August 1984, 282-284.

32. Merritt, M., Fischer, M. and Lynch, N. "Easy Impossibility Proofs for
Distributed Consensus Problems," has been accepted at the Principles of
Distributed Computation conference this August, and was invited to appear
in the first issue of a new journal, Distributed Computing.

206

THEORY OF DISTRIBUTED SYSTEMS

Theses Completed

1. Lundelius, J. "Synchronizing Clocks in a Distributed System,"
MIT/LCS/TR-335, MIT Laboratory for Computer Science, Computer
Science, Cambridge, MA, August 1984.

2. McKay, E. N. "A Methodology For Software Implemented Transient Error
Recovery In Spacecraft Computation," S.B. and S.M. thesis, MIT
Department of Electrical Engineering and Computer Science, Cambridge,
MA, January 1985.

3. Stark, E. W. "Foundations of a Theory of Specification for Distributed
Systems," Ph.D dissertation, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, August 1984.

Thesis in Progress

1. Coan, B. A. "Fundamental Problems in Fault-Tolerant Distributed
Systems," Ph.D. dissertation, MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected May 1986.

Talks

1. Awerbuch, B. "Complexity of Network Synchronization,"

University of California, Berkeley, August 1984
Stanford University, August 1984
IBM San Jose, CA., August 1984
IBM Yorktown, NY, September 1984
MIT, Cambridge, MA. October 1984
GTE Labs, October 1984
University of Toronto, November 1984
Harvard University, December 1984
Yale University, January 1985

2. Awerbuch, B. "Distributed BFS Algorithms,"

GTE Labs, February 1985
MIT, Cambridge, MA, March 1985
University of California Berkeley, April 1985

3. Coan, B. A. "A Simple and Efficient Randomized Byzantine Agreement
Algorithm,"

17th Annual ACM Symposium on Theory of Computing,
Providence, RI, May 1985

4. Coan, B. A. "The Distributed Firing Squad Problem," Symposium on

207

THEORY OF DISTRIBUTED SYSTEMS

Reliability in Distributed Software and Database Systems, Silver Spring,
MD, October 1985

5. Dwork, C. "On the Sequential Nature of Unification,"
Bay Area Theory Seminar (Berkeley), December 1984
IBM San Jose Research Laboratory, December 1984
Singapore National University, January 1985
Chinese University of Hong Kong, January 1985
Stanford University, April 1985

6. Dwork, C. "The Distributed Firing Squad Problem,"
University of California, Berkeley, January 1985
University of British Columbia, January 1985
University of Washington, Seattle, January 1985
Digital Equipment Corp. Systems Res. Center., February 1985
IBM San Jose Research Laboratory, February 1985
Bell Telephone Laboratories, February 1985
Cornell University, February 1985
IBM T.J. Watson Research Center, February 1985
University of Texas, Austin, February 1985
University of Wisconsin, Madison, March 1985
University of Toronto, March 1985
MIT, March 1985

7. Kanellakis, P. C. "On the Parallel Complexity of Unification,"
University of Toronto, December 1984
Micro-Electronics Computer, Texas, January 1985

8. Kanellakis, P. C. "Database Theory and Reasoning about Equations,"
GE Research and Development Labs, April 1985
MIT Seminar April 1985

9. Kanellakis, P. C. "ISIS: Interface for a Semantic Information System,"
Computer Corporation of America, May 1985

10. Lundelius, J. (joint work with N. Lynch) "A New Fault-Tolerant Algorithm
for Clock Synchronization," ACM Symposium on Principles of Distributed
Computing, Vancouver, BC, Canada, August 1984

11. Lynch, N. "Distributed Agreement in Asynchronous Systems,"
University of Texas, Austin, October 1984
University of Wisconsin, Madison, February 1985
Brooklyn College, March 1985

208

THEORY OF DISTRIBUTED SYSTEMS

12. Lynch, N. "Electing a Leader in a Synchronous Ring,"

University of Texas, Austin, October 1984
University of Wisconsin, Madison, February 1985

13. Lynch, N. "Easy Impossibility Proofs for Distributed Consensus Problems,"

University of Wisconsin, Madison, February 1985

14. Lynch, N. "Recent Results on Reaching Approximate Agreement in a

Distributed System," Columbia University, Symposium on Approximately

Solved Problems, April 1985

15. Merritt, Michael "Easy Impossibility Proofs for Distributed Consensus

Problems,"

Harvard University, October 1984
Georgia Institute of Technology, January 1985

209

PUBLICATIONS

Technical Memoranda

TM-103 Jackson, J.N.
Interactive Design Coordination for the Building Industry, June 1970,
AD 708-400

TM-11 Ward, P.W.
Description and Flow Chart of the PDP-7/9 Communications
Package, July 1970, AD 711-379

TM-12 Graham, R.M.
File Management and Related Topics June 12, 1970, September 1970,
AD 712-068

TM-13 Graham, R.M.
Use of High Level Languages for Systems Programmiing, September
1970, AD 711-965

TM-14 Vogt, C.M.
Suspension of Processes in a Multi-processing Computer System,
September 1970, AD 713-989

TM-15 Zilles, S.N.
An Expansion of the Data Structuring Capabilities of PAL, October
1970, AD 720-761

TM-16 Bruere-Dawson, G.
Pseudo-Random Sequences, October 1970, AD 713-852

TM-17 Goodman, L.I.
Complexity Measures for Programming Languages, September 1971,
AD 729-011

TM-18 Reprinted as TR-85

TM-19 Fenichel, R.R.
A New List-Tracing Algorithm, October 1970, AD 714-522

3TMs 1-9 were never issued.

PUBLICATIONS

TM-20 Jones, T.L.
A Computer Model of Simple Forms of Learning, January 1971, AD

720-337

TM-21 Goldstein, R.C.
The Substantive Use of Computers For Intellectual Activities, April

1971, AD 721-618

TM-22 Wells, D.M.
Transmission Of Information Between A Man-Machine Decision

System And Its Environment, April 1971, AD 722-837

TM-23 Strnad, A.J.
The Relational Approach to the Management of Data Bases, April

1971, AD 721-619

TM-24 Goldstein, R.C. and Strnad, A.J.
The MacAIMS Data Management System, April 1971, AD 721-620

TM-25 Goldstein, R.C.
Helping People Think, April 1971, AD 721-998

TM-26 Iazeolla, G.G.
Modeling and Decomposition of Information Systems for Performance

Evaluation, June 1971, AD 733-965

TM-27 Bagchi, A.
Economy of Descriptions and Minimal Indices, January 1972, AD

736-980

TM-28 Wong, R.
Construction Heuristics for Geometry and a Vector Algebra

Representation of Geometry, June 1972, AD 743-487

TM-29 Hossley, R. and Rackoff, C.
The Emptiness Problem for Automata on Infinite Trees, Spring 1972,

AD 747-250

TM-30 McCray, W.A.
SIM360: A S/360 Simulator, October 1972, AD 749-365

TM-31 Bonneau, R.J.
A Class of Finite Computation Structures Supporting the Fast
Fourier Transform, March 1973, AD 757-787

TM-32 Moll, R.
An Operator Embedding Theorem for Complexity Classes of

Recursive Functions, May 1973, AD 759-999

212

PUBLICATIONS

TM-33 Ferrante, J. and Rackoff, C.
A Decision Procedure for the First Order Theory of Real Addition
with Order, May 1973, AD 760-000

TM-34 Bonneau, R.J.
Polynomial Exponentiation: The Fast Fourier Transform Revisited,
June 1973, PB 221-742

TM-35 Bonneau, R.J.
An Interactive Implementation of the Todd-Coxeter Algorithm,
December 1973, AD 770-565

TM-36 Geiger, S.P.
A User's Guide to the Macro Control Language, December 1973, AD
771-435

TM-37 Schonhage, A.
Real-Time Simulation of Multidimensional Turing Machines by
Storage Modification Machines, December 1973, PB 226-103/AS

TM-38 Meyer, A.R.
Weak Monadic Second Order Theory of Successor is not Elementary-
Recursive, December 1973, PB 226-514/AS

TM-39 Meyer, A.R.
Discrete Computation: Theory and Open Problems, January 1974,
PB 226-836/AS

TM-40 Paterson, M.S., Fischer, M.J. and Meyer, A.R.
An Improved Overlap Argument for On-Line Multiplication, January
1974, AD 773-137

TM-41 Fischer, M.J. and Paterson, M.S.
String-Matching and Other Products, January 1974, AD 773-138

TM-42 Rackoff, C.
On the Complexity of the Theories of Weak Direct Products, January
1974, PB 228-459/AS

213

PUBLICATIONS

TM-43 Fischer, M.J. and Rabin, M.O.
Super-Exponential Complexity of Presburger Arithmetic, February
1g74, AD 775-004

TM-44 Pless, V.
Symmetry Codes and their Invariant Subcodes, May 1974, AD
780-243

TM-45 Fischer, M.J. and Stockmeyer, L.J.
Fast On-Line Integer Multiplication, May 1074, AD 779-889

TM-46 Kedem, Z.M.
Combining Dimensionality and Rate of Growth Arguments for
Establishing Lower Bounds on the Number of Multiplications, June
1974, PB 232-969/AS

TM-47 Pleas, V.
Mathematical Foundations of Flip-Flops, June 1974, AD 780-901

TM-48 Kedem, Z.M.
The Reduction Method for Establishing Lower Bounds on the Number
of Additions, June 1974, PB 233-538/AS

TM-49 Pleas, V.
Complete Classification of (24,12) and (22,11) Self-Dual Codes, June
1974, AD 781-335

TM-50 Benedict, G.G.
An Enciphering Module for Multics, S.B. Thesis, EE Dept., July 1974,
AD 782-658

TM-51 Aiello, J.M.
An Investigation of Current Language Support for the Data
Requirements of Structured Programming, S.M. & E.E. Thesis, EE
Dept., September 1974, PB 236-815/AS

TM-52 Lind, J.C.
Computing in Logarithmic Space, September 1974, PB 236-167/AS

TM-53 Bengelloun, S.A.
MDC-Programmer: A Muddle-to Datalanguage Translator for
Information Retrieval, S.B. Thesis, EE Dept., October 1974, AD
786-754

TM-54 Meyer, A.R.
The Inherent Computation Complexity of Theories of Ordered SeL-: A
Brief Survey, October 1974, PB 237-200/AS

214

PUBLICATIONS

TM-55 Hsieh, W.N., Harper, L.H. and Savage, J.E.
A Class of Boolean Functions with Linear Combinatorial Complexity,
October 1974, PB 237-206/AS

TM-56 Gorry, G.A.
Research on Expert Systems, December 1974

TM-57 Levin, M.
On Bateson's Logical Levels of Learning, February 1975

TM-58 Qualitz, J.E.
Decidability of Equivalence for a Class of Data Flow Schemas, March
1975, PB 237-033/AS

TM-59 Hack, M.
Decision Problems for Petri Nets and Vector Addition Systems, March
1975 PB 231-916/AS

TM-60 Weiss, R.B.
CAMAC: Group Manipulation System, March 1975, PB 240-495/AS

TM-61 Dennis, J.B.
First Version of a Data Flow Procedure Language, May 1975

TM-62 Patil, S.S.
An Asynchronous Logic Array, May 1975

TM-63 Pless, V.
Encryption Schemes for Computer Confidentiality, May 1975, AD
A010-217

TM-64 Weiss, R.B.
Finding Isomorph Classes for Combinatorial Structures, S.M. Thesis,
EE Dept., June 1975

TM-65 Fischer, M.J.
The Complexity Negation-Limited Networks - A Brief Survey, June
1975

215

PUBLICATIONS

TM-66 Leung, C.
Formal Properties of Well-Formed Data Flow Schemas, S.B., S.M. &
E.E. Thesis, EE Dept., June 1975

TM-67 Cardoza, E.E.
Computational Complexity of the Word Problem for Commutative
Semigroups, S.M. Thesis, EE & CS Dept., October 1975

TM-68 Weng, K-S.
Stream-Oriented Computation in Recursive Data Flow Schemas, S.M.
Thesis, EE & CS Dept., October 1975

TM-89 Bayer, P.J.
Improved Bounds on the Costs of Optimal and Balanced Binary
Search Trees, S.M. Thesis, EE & CS Dept., November 1975

TM-70 Ruth, G.R.
Automatic Design of Data Processing Systems, February 1976, AD
A023-451

TM-71 Rivest, R.
On the Worst-Case of Behavior of String-Searching Algorithms, April
1976

TM-72 Ruth, G.R.
Protosystem I: An Automatic Programming System Prototype, July
1976, AD A026-912

TM-73 Rivest, R.
Optimal Arrangement of Keys in a Hash Table, July 1976

TM-74 Malvania, N.
The Design of a Modular Laboratory for Control Robotics, S.M.
Thesis, EE & CS Dept., September 1976, AD A030-418

TM-75 Yao, A.C. and Rivest, R.I.
K+1 Heads are Better than K, September 1976, AD A030-008

TM-76 Bloniarz, P.A., Fischer, M.J. and Meyer, A.R.
A Note on the Average Time to Compute Transitive Closures,
September 1976

216

PUBLICATIONS

TM-77 Mok, A.K.
Task Scheduling in the Control Robotics Environment, S.M. Thesis,
EE & CS Dept., September 1976, AD A030-402

TM-78 Benjamin, A.J.
Improving Information Storage Reliability Using a Data Network,
S.M. Thesis, EE & CS Dept., October 1976, AD A033-394

TM-79 Brown, G.P.
A System to Process Dialogue: A Progress Report, October 1976,
AD A033-276

TM-80 Even, S.
The Max Flow Algorithm of Dinic and Karzanov: An Exposition,
December 1976

TM-81 Gifford, D.K.
Hardware Estimation of a Process' Primary Memory Requirements,
S.B. Thesis, EE & CS Dept., January 1977

TM-82 Rivest, R.L., Shamir, A. and Adleman, L.
A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems, April 1977, AD A039-036

TM-83 Baratz, A.E.
Construction and Analysis of Network Flow Problem which Forces
Karzanov Algorithm to O(n 3) Running Time, April 1977

TM-84 Rivest, R.I. and Pratt, V.R.
The Mutual Exclusion Problem for Unreliable Processes, April 1977

TM-85 Shamir, A.
Finding Minimum Cutsets in Reducible Graphs, June 1977, AD
A040-698

TM-86 Szolovits, P., Hawkinson, L.B. and Martin, W.A.
An Overview of OWL, A Language for Knowledge Representation,
June 1977, AD A041-372

TM-87 Clark, D., editor
Ancillary Reports: Kernel Design Project, June 1977

217

PUBLICATIONS

TM-88 Lloyd, E.L.
On Triangulations of a Set of Points in the Plane, S.M. Thesis, EE &
CS Dept., July 1Q77

TM-89 Rodriguez, H. Jr.
Measuring User Characteristics on the Multics System, S.B. Thesis,
EE & CS Dept., August 1977

TM-90 d'Oliveira, C.R.
An Analysis of Computer Decentralization, S.B. Thesis, EE & CS
Dept., October 1977, AD A045-526

TM-91 Shamir, A.
Factoring Numbers in O(log n) Arithmetic Steps, November 1977,
AD A047-709

TM-92 Misunas, D.P.
Report on the Workshop on Data Flow Computer and Program
Organization, November 1977

TM-93 Amikura, K.
A Logic Design for the Cell Block of a Data-Flow Processor, S.M.
Thesis, EE & CS Dept., December 1977

TM-94 Berez, J.M.
A Dynamic Debugging System for MDL, S.B. Thesis, EE & CS Dept.,
January 1978, AD A050-191

TM-95 Harel, D.
Characterizing Second Order Logic with First Order Quntifiers,

February 1978

TM-96 Harel, D., Amir P. and Stavi, J.
A Complete Axiomatic System for Proving Deductions about
Recursive Programs, February 1978

TM-97 Harel, D., Meyer, A.R. and Pratt, V.R.
Computability and Completeness in Logics of Programs, February
1978

218

PUBLICATIONS

TM-98 Harel, D. and Pratt, V.R.
Nondeterminism in Logics of Programs, February 1978

TM-99 LaPaugh, A.S.
The Subgraph Homeomorphism Problem, S.M. Thesis, EE & CS
Dept., February 1978

TM-100 Misunas, D.P.
A Computer Architecture for Data-Flow Computation, S.M. Thesis,
EE & CS Dept., March 1978, AD A052-538

TM-101 Martin, W.A.
Descriptions and the Specialization of Concepts, March 1978, AD
A052-773

TM-102 Abelson, H.
Lower Bounds on Information Transfer in Distributed Computations,
April 1978

TM-103 Harel, D.
Arithmetical Completeness in Logics of Programs, April 1978

TM-104 Jaffe, J.
The Use of Queues in the Parallel Data Flow Evaluation of "If-Then-
While" Programs, May 1978

TM-105 Masek, W.J. and Paterson, M.S.
A Faster Algorithm Computing String Edit Distances, May 1978

TM-106 Parikh, R.
A Completeness Result for a Propositional Dynamic Logic, July 1978

TM-107 Shamir, A.
A Fast Signature Scheme, July 1978, AD A057-152

TM-108 Baratz, A.E.
An Analysis of the Solovay and Strassen Test for Primality, July 1978

TM-109 Parikh, R.
Effectiveness, July 1978

219

PUBLICATIONS

TM-110 Jaffe, J.M.
An Analysis of Preemptive Multiprocessor Job Scheduling, September
1978

TM-111 Jaffe, J.M.
Bounds on the Scheduling of Typed Task Systems, September 1078

TM-112 Parikh, R.
A Decidability Result for a Second Order Process Logic, September
1978

TM-113 Pratt, V.R.
A Near-optimal Method for Reasoning about Action, September 1978

TM-114 Dennis, J.B., Fuller, S.H., Ackerman, W.B., Swan, R.J. and and
Weng, K-S.
Research Directions in Computer Architecture, September 1978, AD
A061-222

TM-115 Bryant, R.E. and Dennis, J.B.
Concurrent Programming, October 1078, AD A061-180

TM-116 Pratt, V.R.
Applications of Modal Logic to Programming, December 1978

TM-117 Pratt, V.R.
Six Lectures on Dynamic Logic, December 1978

TM-118 Borkin, S.A.
Data Model Equivalence, December 1978, AD '062-753

TM-11g Shamir, A. and Zippel, R.E.
On the Security of the Merkle-Hellman Cryptographic Scheme,
December 1978, AD A063-104

TM-120 Brock, J.D.
Operational Semantics of a Data Flow Language, S.M. Thesis, EE &
CS Dept., December 1978, AD A062-997

220

PUBLICATIONS

TM-121 Jaffe, J.
The Equivalence of R.E. Programs and Data Flow Schemes, January
1979

TM-122 Jaffe, J.
Efficient Scheduling of Tasks Without Full Use of Processor
Resources, January 1979

TM-123 Perry, H.M.
An Improved Proof of the Rabin-Hartmanis-Stearns Conjecture, S.M.
& E.E. Thesis, EE & CS Dept., January 1979

TM-124 Toffoli, T.
Bicontinuous Extensions of Invertible Combinatorial Functions,
January 1979, AD A063-886

TM-125 Shamir, A., Rivest, R.L. and Adleman, L.M.
Mental Poker, February 1979, AD A066-331

TM-126 Meyer, A.R. and Paterson, M.S.
With What Frequency Are Apparently Intractable Problems
Difficult?, February 1979

TM-127 Strazdas, R.J.
A Network Traffic Generator for Decnet, S.B. & S.M. Thesis, EE &
CS Dept., March 1979

TM-128 Loui, M.C.
Minimum Register Allocation is Complete in Polynomial Space,
March 1979

TM-129 Shamir, A.
On the Cryptocomplexity of Knapsack Systems, April 1979, AD
A067-972

TM-130 Greif, I. and Meyer, A.R.
Specifying the Semantics of While-Programs: A Tutorial and
Critique of a Paper by Hoare and Lauer, April 1979, AD A068-967

TM-131 Adleman, L.M.
Time, Space and Randomness, April 1979

TM-132 Patil, R.S.
Design of a Program for Expert Diagnosis of Acid Base and
Electrolyte Disturbances, May 1979

221

PUBLICATIONS

TM-133 Loul, M.C.
The Space Complexity of Two Pebble Games on Trees, May 1979

TM-134 Shamir, A.
How to Share a Secret, May 1979, AD A069-397

TM-135 Wyleczuk, R.H.
Timestamps and Capability-Based Protection in a Distributed
Computer Facility, S.B. & S.M. Thesis, EE & CS Dept., June 1979

TM-136 Misunas, D.P.
Report on the Second Workshop on Data Flow Computer and
Program Organization, June 1979

TM-137 Davis, E. and Jaffe, J.M.
Algorithms for Scheduling Tasks on Unrelated Processors, June 1979

TM-138 Pratt, V.R.
Dynamic Algebras: Examples, Constructions, Applications, July 1979

TM-139 Martin, W.A.
Roles, Co-Descriptors, and the Formal Representation of Quantified
English Expressions (Revised May 1980), September 1979, AD
A074-625

TM-140 Szolovits, P.
Artificial Intelligence and Clinical Problem Solving, September 1979

TM-141 Hammer, M. and McLeod, D.
On Database Management System Architecture, October 1979, AD
A076-417

TM-142 Lipski, W., Jr.
On Data Bases with Incomplete Information, October 1979

TM-143 Leth, J.W.
An Intermediate Form for Data Flow Programs, S.M. Thesis, EE &
CS Dept., November 1979

TM-144 Takagi, A.
Concurrent and Reliable Updates of Distributed Databases, November
1979

222

PUBLICATIONS

TM-145 Loui, M.C.
A Space Bound for One-Tape Multidimensional Turing Machines,
November 1979

TM-146 Aoki, D.J.
A Machine Language Instruction Set for a Data Flow Processor, S.M.
Thesis, EE & CS Dept., December 1979

TM-147 Schroeppel, R. and Shamir, A.

A T = 0(2n/ 2), S - 0 (2 n/4) Algorithm for Certain NP-Complete
Problems, January 1980, AD A080-385

TM-148 Adleman, L.M. and Lou!, M.C.
Space-Bounded Simulation of Multitape Turing Machines, January
1980

TM-149 Pallottino, S. and Toffoli, T.
An Efficient Algorithm for Determining the Length of the Longest
Dead Path in an "Lifo" Branch-and-Bound Exploration Schema,
January 1980, AD A079-912

TM-150 Meyer, A.R.
Ten Thousand and One Logics of Programming, February 1980

TM-151 Toffoli, T.
Reversible Computing, February 1980, AD A082-021

TM-152 Papadimitriou, C.H.
On the Complexity of Integer Programming, February 1980

TM-153 Papadimitriou, C.H.
Worst-Case and Probabilistic Analysis of a Geometric Location

Problem, February 1980

TM-154 Karp, R.M. and Papadimitriou, C.H.
On Linear Characterizations of Combinatorial Optimization
Problems, February 1980

TM-155 Atai, A., Lipton, R.J., Papadimitriou, C.H. and Rodeh, M.
Covering Graphs by Simple Circuits, February 1980

TM-156 Meyer, A.R. and Parikh, R.
Definability in Dynamic Logic, February 1980

223

PUBLICATIONS

TM-157 Meyer, A. R. and Winklmann, K.

On the Expressive Power of Dynamic Logic, February 1980

TM-158 Stark, E. W.
Semaphore Primitives and Starvation-Free Mutual Exclusion, S.M.

Thesis, EE & CS Dept., March 1980

TM-159 Pratt, V.R.
Dynamic Algebras and the Nature of Induction, March 1980

TM-160 Kanellakis, P. C.
On the Computational Complexity of Cardinality Constraints in

Relational Databases, March 1980

TM-161 Lloyd, E.L.
Critical Path Scheduling of Task Systems with Resource and
Processor Constraints, March 1980

TM-162 Marcum, A.M.

A Manager for Named, Permanent Objects, S.B. & S.M. Thesis, EE &
CS Dept., April 1980, AD A083-491

TM-163 Meyer, A. R. and Halpern, J.Y.

Axiomatic Definitions of Programming Languages: A Theoretical
Assessment, April 1980

TM-164 Shamir, A.
The Cryptographic Security of Compact Knapsacks (Preliminary
Report), April 1980, AD A084-456

TM-165 Finseth, C.A.
Theory and Practice of Text Editors or A Cookbook for an Emacs,
S.B. Thesis, EE & CS Dept., May 1980

TM-166 Bryant, R. E.
Report on the Workshop on Self-Timed Systems, May 1980

TM-167 Pavelle, R. and Wester, M.
Computer Programs for Research in Gravitation and Differential
Geometry, June 1980

TM-168 Greif, I.
Programs for Distributed Computing: The Calendar Application,

July 1980, AD A087-357

224

PUBLICATIONS

TM-169 Burke, G. and Moon, D.
LOOP Iteration Macro, (revised January 1981) July 1980, AD
A087-372

TM-170 Ehrenfeucht, A., Parikh R. and Rozenberg, G.
Pumping Lemmas for Regular Sets, August 1980

TM-171 Meyer, A.R.
What is a Model of the Lambda Calculus?, August 1980

TM-172 Paseman, W. G.
Some New Methods of Music Synthesis, S.M. Thesis, EE & CS Dept.,
August 1980, AD A090-130

TM-173 Hawkinson, L.B.
XLMS: A Linguistic Memory System, September 1980, AD A090-033

TM-174 Arvind, Kathail V. and Pingali, K.
A Dataflow Architecture with Tagged Tokens, September 1980

TM-175 Meyer, Albert R., Weise, D. and Loui, M.C.
On Time Versus Space III, September 1980

TM-176 Seaquist, C.R.
A Semantics of Synchronization, S.M. Thesis, EE & CS Dept.,
September 1980, AD A091-015

TM-177 Sinha, M. K.
TIMEPAD - A Performance Improving Synchronization Mechanism
for Distributed Systems, September 1980

TM-178 Arvind and Thomas, R.E.
I-Structures: An Efficient Data Type for Functional Languages,
September 1980

TM-179 Halpern J. Y. and Meyer, A.R.
Axiomatic Definitions of Programming Languages, II, October 1980

TM-180 Papadimitriou, C. H.
A Theorem in Database Concurrency Control, October 1980

TM-181 Lipski, W., Jr. and Papadimitriou, C.H.
A Fast Algorithm for Testing for Safety and Detecting Deadlocks In
Locked Transaction Systems, October 1980

225

PUBLICATIONS

TM-182 Itai, A., Papadimitriou C.H. and Szwarefiter, J.L.
Hamilton Paths in Grid Graphs, October 1980

TM-183 Meyer, A. R.
A Note on the Length of Craig's Interpolants, October 1980

TM-184 Lieberman, H. and Hewitt, C.
A Real Time Garbage Collector that can Recover Temporary Storage
Quickly, October 1980

TM-185 Kung, H-T. and Papadimitriou, C.H.
An Optimality Theory of Concurrency Control for Databases,
November 1980, AD A092-625

TM-186 Szolovits, P. and Martin, W.A.
BRAND X Manual, November 1980, AD A093-041

TM-187 Fischer, M. J., Meyer, A.R. and Paterson, M.S.
CapOmega0(n log n) Lower Bounds on Length of Boolean Formulas,
November 1980

TM-188 Mayr, E.
An Effective Representation of the Reachability Set of Persistent
Petri Nets, January 1981

TM-189 Mayr, E.
Persistence of Vector Replacement Systems is Decidable, January
1981

TM-190 Ben-Ari, M., Halpern, J.Y. and Pnueli, A.
Deterministic Propositional Dynamic Logic: Finite Models,
Complexity, and Completeness, January 1981.

TM-191 Parikh, R.
Propositional Dynamic Logics of Programs: A Survey, January 1981.

TM-102 Meyer, A. R., Streett, R.S. and Mirkowska, G.
The Deducibility Problem in Propositional Dynamic Logic, February
1981

TM-193 Yannakakis, M. and Papadimitriou, C.H.
Algebraic Dependencies, February 1981

226

PUBLICATIONS

TM-194 Barendregt, H. and Longo, G.
Recursion Theoretic Operators and Morphisms on Numbered Sets,
February 1981

TM-195 Barber, G. R.
Record of the Workshop on Research in Office Semantics, February
1081

TM-196 Bhatt, S.N.
On Concentration and Connection Networks, S.M. Thesis, EE & CS
Dept., March 1981

TM-197 Fredkin, E. and Toffoli, T.
Conservative Logic, May 1981

TM-198 Halpern, J. and Reif, J.
The Propositional Dynamic Logic of Deterministic Well-Structured
Programs, March 1981

TM-109 Mayr, E. and Meyer, A.
The Complexity of the Word Problems for Communative Semigroups
and Polynomial Ideals, June 1981

TM-200 Burke, G.
LSB Manual, June 1981

TM-201 Meyer, A.
What is a Model of the lambda Calculus? Expanded Version, July
1981.

TM-202 Saltzer, J. H.
Communication Ring Initialization without Central Control December
1981

TM-203 Bawden, A., Burke, G. and Hoffman, C.
Maclisp Extensions, July 1981

TM-204 Halpern, J.Y.
On the Expressive Power of Dynamic Logic, II, August 1981

TM-205 Kannon, R.
Circuit-Size Lower Bounds and Non-Reducibility to Sparce Sets,
October 1981.

TM-206 Leiserson, C. and Pinter, R.
Optimal Placement for River Routing, October 1981

227

PUBLICATIONS

TM-207 Longo, G.
Power Set Models For Lambda-Calculus: Theories, Expansions,
Isomorphisms, November 1981

TM-208 Cosmadakis, S. and Papadimitriou, C.
The Traveling Salesman Problem with Many Visits to Few Cities,
November 1981

TM-209 Johnson, D. and Papadimitriou, C.
Computational Complexity and the Traveling Salesman Problem,
December 1981

TM-210 Greif, I.
Software for the 'Roiels" People Play, February 1982

TM-211 Meyer, A. and Tiuryn, J.
A Note on Equivalences Among Logics of Programs, December 1981

TM-212 Elias, P.
Minimax Optimal Universal Codeword Sets, January 1982

TM-213 Greif, I
PCAL: A Personal Calendar, January 1982

TM-214 Meyer, A. and Mitchell, J.

Terminations for Recursive Programs: Completeness and Axiomatic
Definability, March 1982

TM-215 Leiserson, C. and Saxe J.
Optimizing Synchronous Systems, March 1982

TM-216 Church, K. and Patil, R.
Coping with Syntactic Ambiguity or How to Put the Block in the Box

on the Table, April 1982.

TM-217 Wright, D.
A File Transfer Program for a Personal Computer, April 1982

TM-218 Greif, I.
Cooperative Office Work, Teleconferencing and Calendar
Management: A Collection of Papers, May 1982

TM-219 Jouannaud, J.-P., Lescanne, P and Reinig, F.
Recursive Decomposition Ordering and Multiset Orderings, June 1982

TM-220 Chu, T.-A.
Circuit Analysis of Self-Times Elements for NMOS VLSI Systems,
May 1982

228

PUBLICATIONS

TM-221 Leighton, F., Lepley, M. and Miller, G.
Layouts flor the Shuffle-Exchange Graph Based on the Complex Plane
Diagram, June 1982

TM-222 Meier zu Sieker, F.
A Telex Gateway for the Internety, S.B. Thesis, Electrical
Engineering Dept., May 1982

TM-223 diSessa, A.A.
A Principled Design for an Integrated Computation Environment,
July 1982

TM-224 Barber, G.
Supporting Organizational Problem Solving with a Workstation, July
1982

TM-225 Barber, G. and Hewitt, C.
Foundations for Office Semantics, July 1982

TM-226 Bergstra, J., Chmielinska, A. and Tiuiryn, J.
Hoares's Logic Not Complete When it Could Be, August 1982

TM-227 Leighton, F.T.
New Lower Bound Techniques for VLSI, August 1982

TM-228 Papadimitriou, C. and Zachos, S.
Two Remarks on the Power of Counting, August 1982

TM-229 Cosmadakis, S.
The Complexity of Evaluation Relational Queries, August 1982

TM-230 Shamir, A.
Embedding Cryptographic Trapdoors in Arbitrary Knapsack Systems,
September 1982

TM-231 Kleitman, D., Leighton, F.T., Lepley, M. and Miller G.
An Asymptotically Optimal Layout for the shuffle-exchange Graph,
October 1982

TM-232 Yeh, A.
PLY: A System of Plausibility Inference with a Probabilistic Basis,
December 1982

TM-233 Konopelski, L.
Implementing Internet Remote Login on a Personal Computer, S.B.
Thesis, Electrical Engineering Dept., December 1982

229

PUBLICATIONS

TM-234 Rivest, R. and Sherman, A.
Randomized Encryption Techniques, January 1083.

TM-235 Mitchell, J.
The Implication of Problem for Functional and Inclusion
Dependencies, February 1983

TM-236 Leighton, F.T. and Leiserson, C.E.
Wafter-Scale Integration of Systolic Arrays, February 1983

TM-237 Dolev, D., Leighton, F.T. and Trickey, H.
Planar Embedding of Planar Graphs, February 1983

TM-238 Baker, B.S., Bhatt, S.N. and Leighton, F.T.
An Approximation Algorithm for Manhattan Routing, February 1983

TM-239 Sutherland, J.B. and Sirbu, M.
Evaluation of an Office Analysis Methodology, March 1983

TM-240 Bromley, H.
A Program for Therapy of Acid-Base and Electrolyte Disorders, S.B.
Thesis, Electrical Engineering Dept., June 1Q83

TM-241 Arvind and lannucci, R.A.
Two Fundamental Issues in Multiprocessing: The Dataflow Solution,
September 1983

TM-242 Pingali, K. and Arvind.
Efficient Demand-driven Evaluation (I), September 1983

TM-243 Pingali, K. and Arvind.

Efficient Demand-driven Evaluation (II), September 1983

TM-244 Goldreich, 0., Goldwasser, S. and Micali, S.
How to Construct Random Functions, November 1983

TM-245 Meyer, A.
Understanding Algol: The View of the Recent Convert to

Denotational Semantics, October 1Q83

TM-246 Trakhtenbrot, B.A., Halpern, J.Y. and Meyer, A.R.
From Denotational to Operational and Axiomatic Semantics for
Algol-Like Languages: An Overview, October 1983

TM-247 Leighton, T. and Lepley, M.
Probabilistic Searching in Sorted Linked Lists, November 1983

230

PUBLICATIONS

TM-248 Leighton, F.T. and Rivest, R.L.
Estimating a Probability Using Finite Memory, November 1983

TM-249 Leighton, F.T. and Rivest, R.L.
The Markov Chain Tree Theorem, December 1983

TM-250 Goldreich, 0.
On Concurrent Identification Protocols, December 1983

TM-251 Dolev, D., Lynch, N., Pinter, S. Stark, E. and Weihl, W.
Reaching Approximate Agreement in the Presence of Faults,
December 1983

TM-252 Zachos, S. and Heller, H.
On BPP, December 1983

TM-253 Chor, B., Leiserson, C., Rivest, R. and Shearer, J.
An Application of Number Theory to the Organization of Raster
Graphics Memory, April 1984

TM-254 Feldmeier, D.C.
Empirical Analysis of a Token Ring Network, April 1984

TM-255 Bhatt, S. and Leiserson, C.
How to Assemble Tree Machines, April 1984

TM-256 Goldreich, 0.
On the Number of Close-and Equal Pairs of Bits in a String (With
Implications on the Security of RSA's L.S.B., April 1984

TM-257 Dwork, C., Kanellakis, P. and Mitchell, J.
On the Sequential Nature of Unification, April 1984

TM-258 Halpern, M., Meyer A. and Trakhtenbrot, B.
The Semantics of Local Storage, or What Makes the Free-list Free?,
April 1984

TM-259 Lynch, N. and Fredrickson, G.
The Impact of Synchronous Communication on the Problem of
Electing a Leader in a Ring, April 1984

TM-260 Chor, B. and Goldreich, 0.
RSA/Rabin Least Significant Bits are 1/2 + poly(logn) Secure, May
1984

TM-261 Zaks, S.
Optimal Distributed Algorithms for Sorting and Ranking, May 1984

231

PUBLICATIONS

TM-262 Leighton, T. and Rosenberg, A.
Three-dimensional Circuit Layouts, June 1984

TM-263 Sirbu, M.S. and Sutherland, J.B.
Naming and Directory Issues in Message Transfer Systems, July 1984

TM-264 Sarin, S.K. and Greif, 1.
Software for Interactive On-Line Conferences, July 1984

TM-265 Lundelius, J. and Lynch, N.
A New Fault-Tolerant Algorithm for Clock Synchronization, July
1984

TM-266 Chor, B. and Coan, B.A.
A Simple and Efficient Randomized Byzantine Agreement Algorithm,
August 1984

TM-267 Schooler, R. and Stamos, J.W.
Proposal for a Small Scheme Implementation, October 1984

TM-268 Awerbuch, B.
Complexity of Network Synchronization, January 1985

TM-269 Fisher, M., Lynch, N.A., Burns, J. and Borodin, A.
The Colored Ticket Algorithm, August 1983

TM-270 Dwork, C., Lynch, C. and Stockmeyer, L.
Consensus in the Presence of Partial Synchrony (Preliminary
Version), July 1984

TM-271 Dershowitz, N. and Zaks, S.
Patterns in Trees, January 1985

TM-272 Leighton, T.
Tight Bounds on the Complexity Of Parallel Sorting, April 1985

TM-273 Berman, F., Leighton, T., Shor, P.W. and Shor, L.
Generalized Planar Matching, April 1985

TM-274 Kuipers, B.
Qualitative Simulation of Mechanisms, April 1985

TM-275 Burns, J.E. and Lynch, N.A.
The Byzantine Firing Squad Problem, April 1985

TM-276 Dolev, D., Lynch., N.A., Pinter, S.S., Stark, E.W. and Weihl, W.E.
Reaching Approximate Agreement in the Presence of Faults, May
1985

232

PUBLICATIONS

TM-277 Frederickson, G.N. and Lynch, N.A.
A General Lower Bound for Electing a Leader in a Ring, March 1985

TM-278 Fisch, M.J., Griffeth, N.D., Guibas, L.J. and Lynch, N.A.
Probabilistic Analysis of a Network Resource Allocation Algorithm,
June 1985

TM-279 Fischer, M.J., Lynch, N.A. and Merritt, M.
Easy Impossibility Proofs for Distributed Consensus Problems, June
1985

TM-280 Kuipers, B. and Kassirer, J.P.
Qualitative Simulation in Medical Physiology: A Progress Report,
June 1985

TM-281 Hailperin, M.
What Price for Eliminating Expression Side-Effects?, June 1985

TM-285 Kilian, J.J
Two Undecidability Results in Probabilistic Automata Theory, S.B.
Thesis/June 1985

TM-288 Chung, J.C.
Dscribe: A Scribe Server, May 1985

TM-290 Fisher, M.J., Lynch, N.A., Burns, J.E. and Borodin, A.
Distributed FIFO Allocation of Identical Resources Using Small
Shared Space, June 1985

233

PUBLICATIONS

Technical Reports

TR-1
4

Bobrow, Daniel G.
Natural Language Input for a Computer Problem Solving System,
Ph.D. Dissertation, Math. Dept., September 1964, AD 604-730

TR-2 Raphael, Bertram
SIR: A Computer Program for Semantic Information Retrieval,

Ph.D. Dissertation, Math. Dept., June 1964, AD 608-499

TR-3 Corbato, Fernando J.
System Requirements for Multiple-Access, Time-Shared Computers,
May 1984, AD 608-501

TR-4 Ross, Douglas T. and Clarence G. Feldman

Verbal and Graphical Language for the AED System: A Progress
Report, May 1964, AD 604-678

TR-6 Biggs, John M. and Robert D. Logcher
STRESS: A Problem-Oriented Language for Structural Engineering,

May 1964, AD 604-679

TR-7 Weizenbaum, Joseph
OPL-I: An Open Ended Programming System within CTSS, April
1964, AD 604-680

TR-8 Greenberger, Martin

The OPS-1 Manual, May 1964, AD 604-681

TR-11 Dennis, Jack B.

Program Structure in a Multi-Access Computer, May 1964, AD
608-500

TR-12 Fano, Robert M.

The MAC System: A Progress Report, October 1964, AD 609-296

TR-13 Greenberger, Martin

A New Methodology for Computer Simulation, October 1964, AD
609-288

4TIs 5, 9, 10, 15 were never issued

234

PUBLICATIONS

TR-14 Roos, Daniel
Use of CTSS in a Teaching Environment, November 1964, AD
661-807

TR-16 Saltzer, Jerome H.
CTSS Technical Notes, March 1965, AD 612-702

TR-17 Samuel, Arthur L.
Time-Sharing on a Multiconsole Computer, March 1965, AD 462-158

TR-18 Scherr, Allan Lee
An Analysis of Time-Shar d Computer Systems, Ph.D. Dissertation,
EE Dept., June 1965, AD 470-715

TR-19 Russo, Francis John
A Heuristic Approach to Alternate Routing in a Job Shop, S.B. &
S.M. Thesis, Sloan School, June 1965, AD 474-018

TR-20 Wantman, Mayer Elihu
CALCULAID: An On-Line System for Algebraic Computation and
Analysis, S.M. Thesis, Sloan School, September 1965, AD 474-019

TR-21 Denning, Peter James
Queueing Models for File Memory Operation, S.M. Thesis, EE Dept.,
October 1965, AD 624-943

TR-22 Greenberger, Martin
The Priority Problem, November 1965, AD 625-728

TR-23 Dennis, Jack B. and Earl C. Van Horn
Programming Semantics for Multi-programmed Computations,
December 1965, AD 627-537

TR-24 Kaplow, Roy, Stephen Strong and John Brackett
MAP: A System for On-Line Mathematical Analysis, January 1966,
AD 476-443

TR-25 Stratton, William David
Investigation of an Analog Technique to Decrease Pen-Tracking Time
in Computer Displays, S.M. Thesis, EE Dept., March 1966, AD
631-396

235

PUBLICATIONS

TR-26 Cheek, Thomas Burrell
Design of a Low-Cost Character Generator for Remote Computer
Displays, S.M. Thesis, EE Dept., March 1966, AD 631-269

TR-27 Edwards, Daniel James
OCAS - On-Line Cryptanalytic Aid §ystem, S.M. Thesis, EE Dept.,
May 1966, AD 633-678

TR-28 Smith, Arthur Anshel
Input/Output in Time-Shared, Segmented, Multiprocessor Systems,
S.M. Thesis, EE Dept., June 1966, AD 637-215

TR-29 Ivie, Evan Leon
Search Procedures Based on Measures of Relatedness between
Documents, Ph.D. Dissertation, EE Dept., June 1966, AD 636-275

TR-30 Saltzer, Jerome Howard TRaffic Control in a Multiplexed Computer
System, Sc.D. Thesis, EE Dept., July 1966, AD 635-966

TR-31 Smith, Donald L.
Models and Data Structures for Digital Logic Simulation, S.M. Thesis,
EE Dept., August 1966, AD 637-192

TR-32 Teitelman, Warren
PILOT: A Step Toward Man-Computer Symbiosis, Ph.D.
Dissertation, Math. Dept., September 1966, AD 638-446

TR-33 Norton, Lewis M, ADEPT - A Heuristic Program for Proving
Theorems of Group Theory, Ph.D. Dissertation, Math. Dept., October
1966, AD 645-660

TR-34 Van Horn, Earl C., Jr.
Computer Design for Asynchronously Reproducible Multiprocessing,
Ph.D. Dissertation, EE Dept., November 1966, AD 650-407

TR-35 Fenichel, Robert R.
An On-Line System for Algebraic Manipulation, Ph.D. Dissertation,
Appl. Math. (Harvard), December 1966, AD 657-282

TR-36 Martin, William A.
Symbolic Mathematical Laboratory, Ph.D. Dissertation, EE Dept.,
January 1967, AD 657-283

TR-37 Guzman-Arenas, Adolfo
Some Aspects of Pattern Recognition by Computer, S.M. Thesis, EE
Dept., February 1067, AD 656-041

236

PUBLICATIONS

TR-38 Rosenberg, Ronald C., Daniel W. Kennedy and Roger A. Humphrey
A Low-Cost Output Terminal For Time-Shared Computers, March
1967, AD 662-027

TR-39 Forte, Allen
Syntax-Based Analytic Reading of Musical Scores, April 1967, AD
661-806

TR-40 Miller, James R.
On-Line Analysis for Social Scientists, May 1967, AD 668-009

TR-41 Coons, Steven A.
Surfaces for Computer-Aided Design of Space Forms, June 1967, AD
663-504

TR-42 Liu, Chung L., Gabriel D. Chang and Richard E. Marks
Design and Implementation of a Table-Driven Compiler System, July
1967, AD 668-960

TR-43 Wilde, Daniel U.
Program Analysis by Digital Computer, Ph.D. Dissertation, EE Dept.,
August 1967, AD 662-224

TR-44 Gorry, G. Anthony
A System for Computer-Aided Diagnosis, Ph.D. Dissertation, Sloan
School, September 1967, AD 662-665

TR-45 Leal-Cantu, Nestor
On the Simulation of Dynamic Systems with Lumped Parameters and
Time Delays, S.M. Thesis, ME Dept., October 1967, AD 663-502

TR-46 Alsop, Joseph W.
A Canonic Translator, S.B. Thesis, EE Dept., November 1967, AD
663-503

TR-47 Moses, Joel
Symbolic Integration, Ph.D. Dissertation, Math. Dept., December
1967, AD 662-666

TR-48 Jones, Malcolm M.
Incremental Simulation on a Time-Shared Computer, Ph.D.
Dissertation, Sloan School, January 1968, AD 662-225

TR-49 Luconi, Fred L.
Asynchronous Computational Structures, Ph.D. Dissertation, EE
Dept., February 1968, AD 667-602

237

PUBLICATIONS

TR-50 Denning, Peter J.
Resource Allocation in Multiprocess Computer Systems, Ph.D.
Dissertation, EE Dept., May 1968, AD 675-554

TR-51 Charniak, Eugene
CARPS, A Program which Solves Calculus Word Problems, S.M.
Thesis, EE Dept., July 1968, AD 673-670

TR-52 Deitel, Harvey M.
Absentee Computations in a Multiple-Access Computer System, S.M.
Thesis, EE Dept., August 1968, AD 684-738

TR-53 Slutz, Donald R.
The Flow Graph Schemata Model of Parallel Computation, Ph.D.
Dissertation, EE Dept., September 1968, AD 683-393

TR-54 Grochow, Jerrold M.
The Graphic Display as an Aid in the Monitoring of a Time-Shared
Computer System, S.M. Thesis, EE Dept., October 1968, AD 689-468

TR-55 Rappaport, Robert L.
Implementing Multi-Process Primitives in a Multiplexed Computer
System, S.M. Thesis, EE Dept., November 1968, AD 689-469

TR-56 Thornhill, Daniel E., Robert H. Stotz, Douglas T. Ross and John
E. Ward
An Integrated Hardware-Software System for Computer Graphics in
Time-Sharing, December 1968, AD 685-202

TR-57 Morris, James H.
Lambda-Calculus Models of Programming Languages, Ph.D.
Dissertation, Sloan School, December 1968, AD 683-394

238

PUBLICATIONS

TR-58 Greenbaum, Howard J.
A Simulator of Multiple Interactive Users to Drive a Time-Shared
Computer System, S.M. Thesis, EE Dept., January 1969, AD 686-988

TR-59 Guzman, Adclfo
Computer Recognition of Three- Dimensional Objects in a Visual
Scene, Ph.D. Dissertation, EE Dept., December 1968, AD 692-200

TR-60 Ledgard, Henry F.
A Formal System for Defining the Syntax and Semantics of Computer
Languages, Ph.D. Dissertation, EE Dept., April 1969, AD 689-305

TR-61 Baecker, Ronald M.
Interactive Computer-Mediated Animation, Ph.D. Dissertation, EE
Dept., June 1969, AD 690-887

TR-62 Tillman, Coyt C., Jr.
EPS: An Interactive System for Solving Elliptic Boundary-Value
Problems with Facilities for Data Manipulation and General-Purpose
Computation, June 1969, AD 692-462

TR-63 Brackett, John W., Michael Hammer and Daniel E. Thornhill
Case Study in Interactive Graphics Programming: A Circuit Drawing
and Editing Program for Use with a Storage-Tube Display Terminal,
October 1969, AD 699-930

TR-64 Rodriguez, Jorge E.
A Graph Model for Parallel Computations, Sc.D. Thesis, EE Dept.,
September 1969, AD 697-759

TR-65 DeRemer, Franklin L.
Practical Translators for LR(k) Languages, Ph.D. DissertatiQn, EE
Dept., October 1969, AD 699-501

TR-66 Beyer, Wendell T.
Recognition of Topological Invariants by Iterative Arrays, Ph.D.
Dissertation, Math. Dept., October 1969, AD 699-502

239

PUBLICATIONS

TR-67 Vanderbilt, Dean H.
Controlled Information Sharing in a Computer Utility, Ph.D.
Dissertation, EE Dept., October 1969, AD 690-503

TR-68 Selwyn, Lee L.
Economies of Scale in Computer Use: Initial Tests and Implications
for The Computer Utility, Ph.D. Dissertation, Sloan School, June
1970, AD 710-011

TR-69 Gertz, Jeffrey L.
Hierarchical Associative Memories for Parallel Computation, Ph.D.
Dissertation, EE Dept., June 1970, AD 711-091

TR-70 Fillat, Andrew I. and Leslie A. Kraning
Generalized Organization of Large Data-Bases: A Set-Theoretic
Approach to Relations, S.B. & S.M. Thesis, EE Dept., June 1970, AD
711-060

TR-71 Fiasconaro, James G.
A Computer-Controlled Graphical Display Processor, S.M. Thesis, EE
Dept., June 1970, AD 710-479

TR-72 Patil, Suhas S.
Coordination of Asynchronous Events, Sc.D. Thesis, EE Dept., June
1970, AD 711-763

TR-73 Griffith, Arnold K.
Computer Recognition of Prismatic Solids, Ph.D. Dissertation, Math.
Dept., August 1970, AD 712-069

TR-74 Edelberg, Murray
Integral Convex Polyhedra and an Approach to Integralization, Ph.D.
Dissertation, EE Dept., August 1970, AD 712-070

TR-75 Hebalkar, Prakash G.
Deadlock-Free Sharing of Resources in Asynchronous Systems, Sc.D.
Thesis, EE Dept., September 1970, AD 713-139

TR-76 Winston, Patrick H.
Learning Structural Descriptions from Examples, Ph.D. Dissertation,
EE Dept., September 1970, AD 713-988

TR-77 Haggerty, Joseph P.
Complexity Measures for Language Recognition by Canonic Systems,
S.M. Thesis, EE Dept., October 1970, AD 715-134

240

PUBLICATIONS

TR-78 Madnick, Stuart E.
Design Strategies for File Systems, S.M. Thesis, EE Dept. & Sloan
School, October 1970, AD 714-269

TR-79 Horn, Berthold K.
Shape from Shading: A Method for Obtaining the Shape of a Smooth
Opaque Object from One View, Ph.D. Dissertation, EE Dept.,
November 1970, AD 717-336

TR-80 Clark, David D., Robert M. Graham, Jerome H. Saltzer and Michael
D. Schroeder
The Classroom Information and Computing Service, January 1971,
AD 717-857

TR-81 Banks, Edwin R.
Information Processing and Transmission in Cellular Automata, Ph.D.
Dissertation, ME Dept., January 1971, AD 717-951

TR-82 Krakauer, Lawrence J.
Computer Analysis of Visual Properties of Curved Objects, Ph.D.
Dissertation, EE Dept., May 1971, AD 723-647

TR-83 Lewin, Donald E.
In-Process Manufacturing Quality Control, Ph.D. Dissertation, Sloan
School, January 1971, AD 720-098

TR-84 Winograd, Terry
Procedures as a Representation for Data in a Computer Program for
Understanding Natural Language, Ph.D. Dissertation, Math. Dept.,
February 1971, AD 721-399

TR-85 Miller, Perry L.
Automatic Creation of a Code Generator from a Machine Description,
E.E. Thesis, EE Dept., May 1971, AD 724-730

TR-86 Schell, Roger R.
Dynamic Reconfiguration in a Modular Computer System, Ph.D.
Dissertation, EE Dept., June 1971, AD 725-859

TR-87 Thomas, Robert H.
A Model for Process Representation and Synthesis, Ph.D.
Dissertation, EE Dept., June 1971, AD 726-049

241

PUBLICATIONS

TR-88 Welch, Terry A.
Bounds on Information Retrieval Efficiency in Static File Structures,
Ph.D. Dissertation, EE Dept., June 1971, AD 725-429

TR-89 Owens, Richard C., Jr.
Primary Access Control in Large-Scale Time-Shared Decision Systems,
S.M. Thesis, Sloan School, July 1971, AD 728-036

TR-90 Lester, Bruce P.
Cost Analysis of Debugging Systems, S.B. & S.M. Thesis, EE Dept.,
September 1971, AD 730-521

TR-91 Smoliar, Stephen W.
A Parallel Processing Model of Musical Structures, Ph.D. Dissertation,
Math. Dept., September 1971, AD 731-690

TR-92 Wang, Paul S.
Evaluation of Definite Integrals by Symbolic Manipulation, Ph.D.
Dissertation, Math. Dept., October 1971, AD 732-005

TR-93 Greif, Irene Gloria
Induction in Proofs about Programs, S.M. Thesis, EE Dept., February
1972, AD 737-701

TR-94 Hack, Michel Henri Theodore
Analysis of Production Schemata by Petri Nets, S.M. Thesis, EE
Dept., February 1972, AD 740-320

TR-95 Fateman, Richard J.
Essays in Algebraic Simplification (A revision of a Harvard Ph.D.
Dissertation), April 1972, AD 740-132

TR-96 Manning, Frank
Autonomous, Synchronous Counters Constructed Only of J-K Flip-
Flops, S.M. Thesis, EE Dept., May 1972, AD 744-030

TR-97 Vilfan, Bostjan
The Complexity of Finite Functions, Ph.D. Dissertation, EE Dept.,
March 1972, AD 739-678

TR-98 Stockmeyer, Larry Joseph
Bounds on Polynomial Evaluation Algorithms, S.M. Thesis, EE Dept.,
April 1972, AD 740-328

242

PUBLICATIONS

TR-99 Lynch, Nancy Ann
Relativization cf the Theory of Computational Complexity, Ph.D.
Dissertation, Math. Dept., June 1972, AD 744-032

TR-100 Mandl, Robert
Further Results on Hierarchies of Canonic Systems, S.M. Thesis, EE
Dept., June 1972, AD 744-206

TR-101 Dennis, Jack B.
On the Design and Specification of a Common Base Language, June
1972, AD 744-207

TR-102 Hossley, Robert F.
Finite Tree Automata and w-Automata, S.M. Thesis, EE Dept.,
September 1972, AD 749-367

TR-103 Sekino, Akira
Performance Evaluation of Multiprogrammed Time-Shared Computer
Systems, Ph.D. Dissertation, EE Dept., September 1972, AD 749-949

TR-104 Schroeder, Michael D.
Cooperation of Mutually Suspicious Subsystems in a Computer
Utility, Ph.D. Dissertation, EE Dept., September 1972, AD 750-173

TR-105 Smith, Burton J.
An Analysis of Sorting Networks, Sc.D. Thesis, EE Dept., October
1972, AD 751-614

TR-106 Rackoff, Charles W.
The Emptiness and Complementation Problems for Automata on
Infinite Trees, S.M. Thesis, EE Dept., January 1973, AD 756<-248

TR-107 Madnick, Stuart E.
Storage Hierarchy Systems, Ph.D. Dissertation, EE Dept., April 1973,
AD 760-001

TR-108 Wand, Mitchell
Mathematical Foundations of Formal Language Theory, Ph.D.
Dissertation, Math. Dept., December 1973.

TR-109 Johnson, David S.
Near-Optimal Bin Packing Algorithms, Ph.D. Dissertation, Math.
Dept., June 1973, PB 222-090

243

PUBLICATIONS

TR-110 Moll, Robert
Complexity Classes of Recursive Functions, Ph.D. Dissertation, Math.
Dept., June 1073, AD 767-730

TR-111 Linderman, John P.
Productivity in Parallel Computation Schemata, Ph.D. Dissertation,
EE Dept., December 1973, PB 226-159/AS

TR-112 Hawryszkiewycz, Igor T.
Semantics of Data Base Systems, Ph.D. Dissertation, EE Dept.,
December 1973, PB 226-061/AS

TR-113 Herrmann, Paul P.
On Reducibility Among Combinatorial Problems, S.M. Thesis, Math.
Dept., December 1973, PB 226-157/AS

TR-114 Metcalfe, Robert M.
Packet Communication, Ph.D. Dissertation, Applied Math., Harvard
University, December 1973, AD 771-430

TR-115 Rotenberg, Leo
Making Computers Keep Secrets, Ph.D. Dissertation, EE Dept.,
February 1974, PB 229-352/AS

TR-116 Stern, Jerry A.
Backup and Recovery of On-Line Information in a Computer Utility,

S.M. & E.E. Thesis, EE Dept., January 1974, AD 774-141

TR-117 Clark, David D.
An Input/Output Architecture for Virtual Memory Computer
Systems, Ph.D. Dissertation, EE Dept., January 1974, AD 774-738

TR-118 Briabrin, Victor
An Abstract Model of a Research Institute: Simple Automatic
Programming Approach, March 1974, PB 231-505/AS

TR-119 Hammer, Michael M.
A New Grammatical Transformation into Deterministic Top-Down
Form, Ph.D. Dissertation, EE Dept., February 1974, AD 775-545

TR-120 Ramchandani, Chander
Analysis of Asynchronous Concurrent Systems by Timed Petri Nets,
Ph.D. Dissertation, EE Dept., February 1974, AD 775-618

244

PUBLICATIONS

TR-121 Yao, Foong F.
On Lower Bounds for Selection Problems, Ph.D. Dissertaion, Math.
Dept., March 1974, PB 230-950/AS

TR-122 Scherf, John A.
Computer and Data Security: A Comprehensive Annotated
Bibliography, S.M. Thesis, Sloan School, January 1974, AD 775-546

TR-123 Introduction to Multics
February 1974, AD 918-562

TR-124 Laventhal, Mark S.
Verification of Programs Operating on Structured Data, S.B. & S.M.
Thesis, EE Dept., March 1974, PB 231-365/AS

TR-125 Mark, William S.
A Model-Debugging System, S.B. & S.M. Thesis, EE Dept., April
1974, AD 778-688

TR-126 Altman, Vernon E.
A Language Implementation System, S.B. & S.M. Thesis, Sloan
School, May 1974, AD 780-672

TR-127 Greenberg, Bernard S.
An Experimental Analysis of Program Reference Patterns in the
Multics Virtual Memory, S.M. Thesis, EE Dept., May 1974, AD
780-407

TR-128 Frankston, Robert M.
The Computer Utility as a Marketplace for Computer Services, S.M.
& E.E. Thesis, EE Dept., May 1974, AD 780-436

TR-129 Weissberg, Richard W.
Using Interactive Graphics in Simulating the Hospital Emergency
Room, S.M. Thesis, EE Dept., May 1974, AD 780-437

TR-130 Ruth, Gregory R.
Analysis of Algorithm Implementations, Ph.D. Dissertation, EE Dept.,
May 1974, AD 780-408

TR-131 Levin, Michael
Mathematical Logic for Computer Scientists, June 1974.

245

PUBLICATIONS

TR-132 Janson, Philippe A.
Removing the Dynamic Linker from the Security Kernel of a
Computing Utility, S.M. Thesis, EE Dept., June 1974, AD 781-305

TR-133 Stockmeyer, Larry J.
The Complexity of Decision Problems in Automata Theory and Logic,
Ph.D. Dissertation, EE Dept., July 1974, PB 235-283/AS

TR-134 Ellis, David J.
Semantics of Data Structures and References, S.M. & E.E. Thesis, EE
Dept., August 1974, PB 236-594/AS

TR-135 Pfister, Gregory F.
The Computer Control of Changing Pictures, Ph.D. Dissertation, EE
Dept., September 1974, AD 787-795

TR-136 Ward, Stephen A.
Functional Domains of Applicative Languages, Ph.D. Dissertation, EE
Dept., September 1974, AD 787-796

TR-137 Seiferas, Joel I.
Nondeterministic Time and Space Complexity Classes, Ph.D.
Dissertation, Math. Dept., September 1974.
PB 236-777/AS

TR-138 Yun, David Y. Y.
The Hensel Lemma in Algebraic Manipulation, Ph.D. Dissertation,
Math. Dept., November 1974, AD A002-737

TR-139 Ferrante, Jeanne
Some Upper and Lower Bounds on Decision Procedures in Logic,
Ph.D. Dissertation, Math. Dept., November 1974.
PB 238-121/AS

TR-140 Redell, David D.
Naming and Protection in Extendable Operating Systems, Ph.D.
Dissertation, EE Dept., November 1974, AD Aoo1-721

TR-141 Richards, Martin, A. Evans and R. Mabee
The BCPL Reference Manual, December 1974, AD A003-599

TR-142 Brown, Gretchen P.
Some Problems in German to English Machine Translation, S.M. &
E.E. Thesis, EE Dept., December 1974, AD A003-002

TR-143 Silverman, Howard
A Digitalis Therapy Advisor, S.M. Thesis, EE Dept., January 1975.

246

PUBLICATIONS

TR-144 Rackoff, Charles
The Computational Complexity of Some Logical Theories, Ph.D.
Dissertation, EE Dept., February 1975.

TR-145 Henderson, D. Austin
The Binding Model: A Semantic Base for Modular Programming
Systems, Ph.D. Dissertation, EE Dept., February 1975, AD A006-961

TR-146 Malhotra, Ashok
Design Criteria for a Knowledge-Based English Language System for
Management: Ar Experimental Analysis, Ph.D. Dissertation, EE
Dept., February 1975.

TR-147 Van De Vanter, Michael L.
A Formalization and Correctness Proof of the CGOL Language
System, S.M. Thesis, EE Dept., March 1975.

TR-148 Johnson, Jerry
Program Restructuring for Virtual Memory Systems, Ph.D.
Dissertation, EE Dept., March 1975, AD A009-218

TR-149 Snyder, Alan
A Portable Compiler for the Language C, S.B. & S.M. Thesis, EE
Dept., May 1975, AD A010-218

TR-150 Rumbaugh, James E.
A Parallel Asynchronous Computer Architecture for Data Flow
Programs, Ph.D. Dissertation, EE Dept., May 1975, AD A010-918

TR-151 Manning, Frank B.
Automatic Test, Configuration, and Repair of Cellular Arrays, Ph.D.
Dissertation, EE Dept., June 1975, AD A012-822

TR-152 Qualitz, Joseph E.
Equivalence Problems for Monadic Schemas, Ph.D. Dissertation, EE
Dept., June 1975, AD A012-823

TR-153 Miller, Peter B.
Strategy Selection in Medical Diagnosis, S.M. Thesis, EE & CS Dept.,
September 1975.

TR-154 Greif, Irene
Semantics of Communicating Parallel Processes, Ph.D. Dissertation,
EE & CS Dept., September 1975, AD A01-302

TR-155 Kahn, Kenneth M.

247

PUBLICATIONS

Mechanization of Temporal Knowledge, S.M. Thesis, EE & CS Dept.,
September 1075.

TR-156 Bratt, Richard G.
Minimizing the Naming Facilities Requiring Protection in a Computer
Utility, S.M. Thesis, EE & CS Dept., September 1975.

TR-157 Meldman, Jeffrey A.
A Preliminary Study in Computer-Aided Legal Analysis, Ph.D.
Dissertation, EE & CS Dept., November 1975, AD A018-997

TR-158 Grossman, Richard W.
Some Data-base Applications of Constraint Expressions, S.M. Thesis,
EE & CS Dept., February 1976, AD A024-149

TR-150 Hack, Michel
Petri Net Languages, March 1976.

TR-160 Bosyj, Michael
A Program for the Design of Procurement Systems, S.M. Thesis, EE
& CS Dept., May 1976, AD A026-688

TR-161 Hack, Michel
Decidability Questions, Ph.D. Dissertation, EE & CS Dept., June
1976.

TR-162 Kent, Stephen T.
Encryption-Based Protection Protocols for Interactive User-Computer
Communication, S.M. Thesis, EE & CS Dept., June 1976, AD
A026-911

TR-163 Montgomery, Warren A.
A Secure and Flexible Model of Process Initiation for a Computer
Utility, S.M. & E.E. Thesis, EE & CS Dept., June 1976.

TR-164 Reed, David P.
Processor Multiplexing in a Layered Operating System, S.M. Thesis,
EE & CS Dept., July 1976.

248

PUBLICATIONS

TR-165 McLeod, Dennis J.
High Level Expression of Semantic Integrity Specifications in a
Relational Data Base System, S.M. Thesis, EE & CS Dept.,
September 1976, AD A034-184

TR-166 Chan, Arvola Y.
Index Selection in a Self-Adaptive Relational Data Base Management
System, S.M. Thesis, EE & CS Dept., September 1976, AD A034-185

TR-167 Janson, Philippe A.
Using Type Extension to Organize Virtual Memory Mechanisms,
Ph.D. Dissertation, EE & CS Dept., September 1976.

TR-168 Pratt, Vaughan R.
Semantical Considerations on Floyd-Hoare Logic, September 1976.

TR-169 Safran, Charles, James F. Desforges and Philip N. Tsichlis
Diagnostic Planning and Cancer Management, September 1976.

TR-170 Furtek, Frederick C.
The Logic of Systems, Ph.D. Dissertation, EE & CS Dept., December
1976.

TR-171 Huber, Andrew R.
A Multi-Process Design of a Paging System, S.M. & E.E. Thesis, EE
& CS Dept., December 1976.

TR-172 Mark, William S.
The Reformulation Model of Expertise, Ph.D. Dissertation, EE & CS
Dept., December 1976, AD A035-397

TR-173 Goodman, Nathan
Coordination of Parallel Processes in the Actor Model of
Computation, S.M. Thesis, EE & CS Dept., December 1076.

TR-174 Hunt, Douglas H.
A Case Study of Intermodule Dependencies in a Virtual Memory
Subsystem, S.M. & E.E. Thesis, EE & CS Dept., December 1976.

TR-175 Goldberg, Harold J.
A Robust Environment for Program Development, S.M. Thesis, EE &
CS Dept., February 1977.

TR-176 Swartout, William R.
A Digitalis Therapy Advisor with Explanations, S.M. Thesis, EE &
CS Dept., February 1977.

249

PUBLICATIONS

TR-177 Mason, Andrew H.
A Layered Virtual Memory Manager, S.M. & E.E. Thesis, EE & CS
Dept., May 1977.

TR-178 Bishop, Peter B.
Computer Systems with a Very Large Address Space and Garbage
Collection, Ph.D. Dissertation, EE & CS Dept., May 1977, AD
A040-601

TR-179 Karger, Paul A.
Non-Discretionary Access Control for Decentralized Computing
Systems, S.M. Thesis, EE & CS Dept., May 1977, AD A040-804

TR-180 Luniewski, Allen W.
A Simple and Flexible System Initialization Mechanism, S.M. & E.E.
Thesis, EE & CS Dept., May 1977.

TR-181 Mayr, Ernst W.
The Complexity of the Finite Containment Problem for Petri Nets,
S.M. Thesis, EE & CS Dept., June 1977.

TR-182 Brown, Gretchen P.
A Framework for Processing Dialogue, June 1977, AD A042-370

TR-183 Jaffe, Jeffrey M.
Semilinear Sets and Applications, S.M. Thesis, EE & CS Dept., July
1977.

TR-184 Levine, Paul H.
Facilitating Interprocess Communication in a Heterogeneous Network
Environment, S.B. & S.M. Thesis, EE & CS Dept., July 1977, AD
A043-901

TR-185 Goldman, Barry
Deadlock Detection in Computer Networks, S.B. & S.M. Thesis, EE &
CS Dept., September 1977, AD A047-025

TR-186 Ackerman, 'William B.
A Structure Memory for Data Flow Computers, S.M. Thesis, EE &
CS Dept., September 1977, AD A047-026

TR-187 Long, William J.
A Program Writer, Ph.D. Dissertation, EE & CS Dept., November
1977, AD A047-595

TR-188 Bryant, Randal E.

250

PUBLICATIONS

Simulation of Packet Communication Architecture Computer
Systems, S.M. Thesis, EE & CS Dept., November 1977, AD A048-290

TR-189 Ellis, David J.
Formal Specifications for Packet Communication Systems, Ph.D.
Dissertation, EE & CS Dept., November 1977, AD A048-980

TR-190 Moss, J. Eliot B.
Abstract Data Types in Stack Based Languages, S.M. Thesis, EE &
CS Dept., February 1978, AD A052-332

TR-191 Yonezawa, Akinori
Specification and Verification Techniques for Parallel Programs Based
on Message Passing Semantics, Ph.D. Dissertation, EE & CS Dept.,
January 1978, AD A051-149

TR- 192 Niamir, Bahram
Attribute Partitioning in a Self-Adaptive Relational Database System,
S.M. Thesis, EE & CS Dept., January 1978, AD A053-292

TR-193 Schaffert, J. Craig
A Formal Definition of CLU, S.M. Thesis, EE & CS Dept., January
1978

TR-194 Hewitt, Carl and Henry Baker, Jr.
Actors and Continuous Functionals, February 1978, AD A052-266

TR-195 Bruss, Anna R.
On Time-Space Classes and Their Relation to the Theory of Real
Addition, S.M. Thesis, EE & CS Dept., March 1978

TR-196 Schroeder, Michael D., David D. Clark, Jerome H. Saltzer and
Douglas H. Wells
Final Report of the Multics Kernel Design Project, March 1978

TR-197 Baker, Henry Jr.
Actor Systems for Real-Time Computation, Ph.D. Dissertation, EE &
CS Dept., March 1978, AD A053-328

TR-198 Halstead, Robert H., Jr.
Multiple-Processor Implementation of Message-Passing Systems, S.M.
Thesis, EE & CS Dept., April 1978, AD A054-009

TR-199 Terman, Christopher J.
The Specification of Code Generation Algorithms, S.M. Thesis, EE &
CS Dept., April 1978, AD A054-301

251

PUBLICATIONS

TR-200 Harel, David
Logics of Programs: Axiomatics and Descriptive Power, Ph.D.
Dissertation, EE & CS Dept., May 1078

TR-201 Scheifler, Robert W.
A Denotational Semantics of CLU, S.M. Thesis, EE & CS Dept., June
1078

TR-202 Principato, Robert N., Jr.
A Formalization of the State Machine Specification Technique, S.M.
& E.E. Thesis, EE & CS Dept., July 1978

TR-203 Laventhal, Mark S.
Synthesis of Synchronization Code for Data Abstractions, Ph.D.
Dissertation, EE & CS Dept., July 1978, AD A058-232

TR-204 Teixeira, Thomas J.
Real-Time Control Structures for Block Diagram Schemata, S.M.
Thesis, EE & CS Dept., August 1978, AD A061-122

TR-205 Reed, David P.
Naming and Synchronization in a Decentralized Computer System,
Ph.D. Dissertation, EE & CS Dept., October 1978, AD A061-407

TR-206 Borkin, Sheldon A.
Equivalence Properties of Semantic Data Models for Database
Systems, Ph.D. Dissertation, EE & CS Dept., January 1979, AD
A066-386

TR-207 Montgomery, Warren A.
Robust Concurrency Control for a Distributed Information System,
Ph.D. Dissertation, EE & CS Dept., January 1979, AD A066-996

252

PUBLICATIONS

TR-208 Krizan, Brock C.
A Minicomputer Network Simulation System, S.B. & S.M. Thesis, EE
& CS Dept., February 1979

TR-209 Snyder, Alan
A Machine Architecture to Support an Object-Oriented Language,
Ph.D. Dissertation, EE & CS Dept., March 1979, AD A068-111

TR-210 Papadimitriou, Christos H.
Serializability of Concurrent Database Updates, March 1979

TR-211 Bloom, Toby
Synchronization Mechanisms for Modular Programming Languages,
S.M. Thesis, EE & CS Dept., April 1979, AD A069-819

TR-212 Rabin, Michael 0.
Digitalized Signatures and Public-Key Functions as Intractable as
Factorization, March 1979

TR-213 Rabin, Michael 0.
Probabilistic Algorithms in Finite Fields, March 1979

TR-214 McLeod, Dennis
A Semantic Data Base Model and Its Associated Structured User
Interface, Ph.D. Dissertation, EE & CS Dept., March 1979, AD
A068-112

TR-215 Svobodova, Liba, Barbara Liskov and David Clark
Distributed Computer Systems: Structure and Semantics, April 1979,
AD A070-286

TR-216 Myers, John M.
Analysis of the SIMPLE Code for Dataflow Computation, June 1979

TR-217 Brown, Donna J.
Storage and Access Costs for Implementations of Variable - Length
Lists, Ph.D. Dissertation, EE & CS Dept., June 1979

TR-218 Ackerman, William B. and Jack B. Dennis
VAL--A Value-Oriented Algorithmic Language: Preliminary
Reference Manual, June 1979, AD A072-394

253

PUCATIONS

TR-219 Sollins, Karen R.
Copying Complex Structures in a Distributed System, S.M. Thesis,
EE & CS Dept., July 1979, AD A072-441

TR-220 Kosinski, Paul R.
Denotational Semantics of Determinate and Non-Determinate Data
Flow Programs, Ph.D. Dissertation, EE & CS Dept., July 1979

TR-221 Berzins, Valdis A.
Abstract Model Specifications for Data Abstractions, Ph.D.
Dissertation, EE & CS Dept., July 1979

TR-222 Halstead, Robert H., Jr.
Reference Tree Networks: Virtual Machine and Implementation,
Ph.D. Dissertation, EE & CS Dept., September 1979, AD A076-570

TR-223 Brown, Gretchen P.
Toward a Computational Theory of Indirect Speech Acts, October
1979, AD A077-065

TR-224 Isaman, David L.
Data-Structuring Operations in Concurrent Computations, Ph.D.
Dissertation, EE & CS Dept., October 1979

TR-225 Liskov, Barbara, Russ Atkinson, Toby Bloom, Eliot Moss, Craig
Schaffert, Bob Scheifler and Alan Snyder
CLU Reference Manual, October 1979, AD A077-018

TR-226 Reuveni, Asher
The Event Based Language and Its Multiple Processor
Implementations, Ph.D. Dissertation, EE & CS Dept., January 1980,
AD A081-950

TR-227 Rosenberg, Ronni L.
Incomprehensible Computer Systems: Knowledge Without Wisdom,
S.M. Thesis, EE & CS Dept., January 1980

TR-228 Weng, Kung-Song
An Abstract Implementation for a Generalized Data Flow Language,
Ph.D. Dissertation, EE & CS Dept., January 1980

254

PUBLICATIONS

TR-229 Atkinson, Russell R.
Automatic Verification of Serializers, Ph.D. Dissertation, EE & CS
Dept., March 1980, AD A082-885

TR-230 Baratz, Alan E.
The Complexity of the Maximum Network Flow Problem, S.M.
Thesis, EE & CS Dept., March 1980

TR-231 Jaffe, Jeffrey M.
Parallel Computation: Synchronization, Scheduling, and Schemes,
Ph.D. Dissertation, EE & CS Dept., March 1980

TR-232 Luniewski, Allen W.
The Architecture of an Object Based Personal Computer, Ph.D.
Dissertation, EE & CS Dept., March 1980, AD A083-433

TR-233 Kaiser, Gail E.
Automatic Extension of an Augmented Transition Network Grammar
for Morse Code Conversations, S.B. Thesis, EE & CS Dept., April
1980, AD A084-411

TR-234 Herlihy, Maurice P. TRansmitting Abstract Values in Messages, S.M.
Thesis, EE & CS Dept., May 1980, AD A086-984

TR-235 Levin, Leonid A.
A Concept of Independence with Applications in Various Fields of
Mathematics, May 1980

TR-236 Lloyd, Errol L.
Scheduling Task Systems with Resources, Ph.D. Dissertation, EE &
CS Dept., May 1980

TR-237 Kapur, Deepak
Towards a Theory for Abstract Data Types, Ph.D. Dissertation, EE &
CS Dept., June 1980, AD A085-877

TR-238 Bloniarz, Peter A.
The Complexity of Monotone Boolean Functions and an Algorithm
for Finding Shortest Paths in a Graph, Ph.D. Dissertation, EE & CS
Dept., June 1980

TR-239 Baker, Clark M.
Artwork Analysis Tools for VLSI Circuits, S.M. & E.E. Thesis, EE &
CS Dept., June 1980, AD A087-040

255

PUBLICATIONS

TR-240 Montz, Lynn B.
Safety and Optimization Transformations for Data Flow Programs,
S.M. Thesis, EE & CS Dept., July 1980

TR-241 Archer, Rowland F., Jr.
Representation and Analysis of Real-Time Control Structures, S.M.
Thesis, EE & CS Dept., August 1080, AD A089-828

TR-242 Loui, Michael C.
Simulations Among Multidimensional Turing Machines, Ph.D.
Dissertation, EE & CS Dept., August 1080

TR-243 Svobodova, Liba
Management of Object Histories in the Swallow Repository, August
1080, AD A089-836

TR-244 Ruth, Gregory R.
Data Driven Loops, August 1980

TR-245 Church, Kenneth W.
On Memory Limitations in Natural Language Processing, S.M. Thesis,
EE & CS Dept., September 1980

TR-246 Tiuryn, Jerzy
A Survey of the Logic of Effective Definitions, October 1980

TR-247 Weihl, William E.
Interprocedural Data Flow Analysis in the Presence of Pointers,
Procedure Variables, and Label Variables, S.B.& S.M.Thesis, EE &
CS Dept., October 1980

TR-248 LaPaugh, Andrea S.
Algorithms for Integrated Circuit Layout: An Analytic Approach,
Ph.D.Dissertation, EE & CS Dept., November 1980

TR-249 Turkle, Sherry
Computers and People: Personal Computation, December 1980

TR-250 Leung, Clement Kin Cho
Fault Tolerance in Packet Communication Computer Architectures,
Ph.D. Dissertation, EE & CS Dept., December 1980

256

PUBLICATIONS

TR-251 Swartout, William R.
Producing Explanations and Justifications of Expert Consulting
Programs, Ph.D. Dissertation, EE & CS Dept., January 1981

TR-252 Arens, Gail C.
Recovery of the Swallow Repository, S.M. Thesis, EE & CS Dept.,
January 1981, AD A096-374

TR-253 Ilson, Richard
An Integrated Approach to Formatted Document Production, S.M.
Thesis, EE & CS Dept., February 1981

TR-254 Ruth, Gregory, Steve Alter and William Martin
A Very High Level Language for Business Data Processing, March
1981

TR-255 Kent, Stephen T.
Protecting Externally Supplied Software in Small Computers, Ph.D.
Dissertation, EE & CS Dept., March 1981

TR-256 Faust, Gregory G.
Semiautomatic Translation of COBOL into HIBOL, S.M. Thesis, EE
& CS Dept., April 1981

TR-257 Cisari, C.
Application of Data Flow Architecture to Computer Music Synthesis,
S.B./S.M. Thesis, EE & CS Dept., February 1981

TR-258 Singh, N.
A Design Methodology for Self-Timed Systems, S.M. Thesis, EE & CS
Dept., February 1981

TR-259 Bryant, R.E.
A Switch-Level Simulation Model for Integrated Logic Circuits, Ph.D.
Dissertation, EE & CS Dept., March 1981

TR-260 Moss, E.B.
Nested Transactions: An Approach to Reliable Distributed
Computing, Ph.D. Dissertation, EE & CS Dept., April 1981

TR-261 Martin, W.A., Church, K.W., Patil, R.S.
Preliminary Analysis of a Breadth-First Parsing Algorithm:
Theoretical and Experimental Results, EE & CS Dept., June 1981

257

PUBLICATIONS

TR-262 Todd, K.W.
High Level Val Constructs in a Static Data Flow Machine, S.M.
Thesis, EE & CS Dept., June 1981

TR-263 Street, R.S.
Propositional Dynamic Logic of Looping and Converse, Ph.D.
Dissertation, EE & CS Dept., May 1981

TR-264 Schiffenbauer, R.D.
Interactive Debugging in a Distributed Computational Environment,
S.M. Thesis, EE & CS Dept., August 1981

TR-265 Thomas, R.E.
A Data Flow Architecture with Improved Asymptotic Performance,
Ph.D. Dissertation, EE & CS Dept., April 1981

TR-266 Good, M.
An Ease of Use Evaluation of an Integrated Editor and Formatter,
S.M. Thesis, EE & CS Dept., August 1981

TR-267 Patil, R.S.
Causal Representation of Patient Illness for Electrolyte and Acid-Base
Diagnosis, Ph.D. Dissertation, EE & CS Dept., October 1981

TR-268 Guttag, J.V., Kapur, D., Musser, D.R.
Derived Pairs, Overlap Closures, and Rewrite Dominoes: New Tools
for Analyzing Term Rewriting Systems, EE & CS Dept., December
1981

TR-269 Kanellakis, P.C.
The Complexity of Concurrency Control for Distributed Data Bases,
Ph.D. Dissertation, EE & CS Dept., December 1981

TR-270 Singh, V.
The Design of a Routing Service for Campus-Wide Internet
Transport, S.M. Thesis, EE & CS Dept., January 1982

TR-271 Rutherford, C.J., Davies, B., Barnett, A.I., Desforges, J.F.
A Computer System for Decision Analysis in Hodgkins Disease, EE &
CS Dept., February 1982

TR-272 Smith, B.C.
Reflection and Semantics in a Procedural Language, Ph.D.
Dissertation, EE & CS Dept., January 1982

258

PUBLICATIONS

TR-273 Estrin, D.L.
Data Communications via Cable Television Networks: Technical and
Policy Considerations, S.M. Thesis, EE & CS Dept., May 1982

TR-274 Leighton, F.T.
Layouts for the Shuffle-Exchange Graph and Lower Bound
Techniques for VLSI, Ph.D. Dissertation, EE & CS Dept., August
1981

TR-275 Kunin, J.S.
Analysis and Specification of Office Procedures, Ph.D. Dissertation,
EE & CS Dept., February 1982

TR-276 Srivas, M.K.
Automatic Synthesis of Implementations for Abstract Data Types
from Algebraic Specifications, Ph.D. Dissertation, EE & CS Dept.,
June 1982

TR-277 Johnson, M.G.
Efficient Modeling for Short Channel Mos Circuit Simulation, S.M.
Thesis, EE & CS Dept., August 1982

TR-278 Rosenstein, L.S.
Display Management in an Integrated Office, S.M. Thesis, EE & CS
Dept., January 1982

TR-279 Anderson, T.L.
The Design of a Multiprocessor Development System, S.M. Thesis, EE
& CS Dept., September 1982

TR-280 Guang-Rong, G.
An Implementation Scheme for Array Operations in Static Data Flow
Computers, S.M. Thesis, EE & CS Dept., May 1982

TR-281 Lynch, N.A.
Multilevel Atomicity - A New Correctness Criterion for Data Base
Concurrency Control, EE & CS Dept., August 1982

TR-282 Fischer, M.J., Lynch, N.A., Paterson, M.S.
Impossibility of Distributed Consensus with One Faulty Process, EE
& CS Dept., September 1982

259

PUBLICATIONS

TR-283 Sherman, H.B.
A Comparative Study of Computer-Aided Clinical Diagnosis, S.M.
Thesis, EE & CS Dept., January 1981

TR-284 Cosmadakis, S.S.
Translating Updates of Relational Data Base Views, S.M. Thesis, EE
& CS Dept., February 1983

TR-285 Lynch, N.A.
Concurrency Control for Resilient Nested Transactions, EE & CS
Dept., February 1983

TR-286 Goree, J.A.
Internal Consistency of a Distributed Transaction System with
Orphan Detection, S.M. Thesis, EE & CS Dept., January 1983

TR-287 Bui, T.N.
On Bisecting Random Graphs, S.M. Thesis, EE & CS Dept., March
1983

TR-288 Landau, S.E.
On Computing Galois Groups and its Application to Solvability by
Radicals, Ph.D. Dissertation, EE & CS Dept., March 1983

TR-289 Sirbu, M., Schoichet, S.R., Kunin, J.S., Hammer, M.M., Sutherland,
J.B., Zarmer, C.L.
Office Analysis: Methodology and Case Studies, EE & CS Dept.,
March 1983

TR-290 Sutherland, J.B.
An Office Analysis and Diagnosis Methodology, S.M. Thesis, EE & CS
Dept., March 1983

TR-291 Pinter, R.Y.
The Impact of Layer Assignment Methods on Layout Algorithms for
Integrated Circuits, Ph.D. Dissertation, EE & CS Dept., August 1982

TR-292 Dornbrook, M., Blank, M.
The MDL Programming Language Primer, EE & CS Dept., June 1980

TR-293 Galley, S.W., Pfister, G.
The MDL Programming Language, EE & CS Dept., May 1979

200

PUBLICATIONS

TR-294 Lebling, P.D.
The MDL Programming Environment, EE & CS Dept., May 1980

TR-295 Pitman, K.M.
The Revised Maclisp Manual, EE & CS Dept., June 1983

TR-296 Church, K.W.
Phrase-Structure Parsing: A Method for Taking Advantage of
Allophonic Constraints, Ph.D. Dissertation, EE & CS Dept., June
1983

TR-297 Mok, A.K.
Fundamental Design Problems of Distributed Systems for the Hard-
Real-Time Environment, Ph.D. Dissertation, EE & CS Dept., June
1983

TR-298 Krugler, K.
Video Games and Computer Aided Instruction, EE & CS Dept., June
1983

TR-299 Wing, J.
A Two Tiered Approach to Specifying Programs, June 1983

TR-300 Cooper, G.
An Argument for Soft Layering of Protocols, May 1983

TR-301 Valente, J.A.
Creating a Computer-based Learning Environment for Physically
Handicapped Children, Ph.D. Dissertation, EE & CS Dept.,
September 1983

TR-302 Arvind, Dertouzos, M.L. and Iannucci, R.A.
A Multiprocessor Emulation Facility, October 1983

TR-303 Bloom T.
Dynamic Module Replacement in a Distributed Programming System,
Ph.D. Dissertation, EE & CS Dept., September 1983

TR-304 Terman, C.J.
Simulation Tools for Digital LSI Design, Ph.D. Dissertation, EE & CS
Dept., September 1983

TR-305 Bhatt, S.N. and Leighton, F.T.
A Framework for Solving VLSI Graph Layout Problems, Ph.D.
Dissertation, EE & CS Dept., October 1983

TR-306 Leung, K.C. and Lim, W. Y-P.

261

PUBLICATIONS

PADL -- A Packet Architecture Description Language: A Preliminary
Reference Manual, October 1983

TR-307 Guttag, J.V. and Horning, J.J.
Preliminary Report on the Larch Shared Language, October 1983

TR-308 Oki, B.M.
Reliable Object Storage to Support Atomic Actions, M.S. Thesis, EE
& CS Dept., November 1983

TR-309 Brock, J.D.
A Formal Model of Non-determinate Dataflow Computation, Ph.D.
Dissertation, EE & CS Dept., November 1983

TR-310 Granville, R.
Cohesion in Computer Text Generation: Lexical Substitution, M.S.
Thesis, EE & CS Dept., December 1983

TR-311 Burke, G.G., Carrette, G.J. and Eliot, C.R.
NIL Reference Manual, M.S. Thesis, EE & CS Dept., December 1983

TR-312 Landcaster, J.
Naming in a Programming Support Environment, M.S. Thesis, EE &
CS Dept., April 1984

TR-313 Koile, K.
The Design and Implementation of an Online Directory Assistance
System, M.S. Thesis, EE & CS Dept., April 1984

TR-314 Weihl, W.
Specification and Implementation of Atomic Data Types, Ph.D.
Dissertation, EE & CS Dept., April 1984

TR-315 Coan, B. and Turpin, R.
Extending Binary Byzantine Agreement to Multivalued Byzantine
Agreement, April 1984

TR-316 Comer, M.H.
Loose Consistency in a Personal Computer Mail System, S.B. & M.S.
Thesis, May 1984

TR-317 Traub, K.R.
An Abstract Architecture for Parallel Graph Reduction, S.B. Thesis,
May 1984

TR-324 Schooler, R.
Partial Evaluation as a Means of Language Extensibility, S.M.
Thesis/August 1984

282

PUBLICATIONS

TR-327 Chiu, S.Y.
Debugging Distributed Computations in a Nested Atomic Action
System, Ph.D. Dissertation/December 1984

TR-328 Carnese, D.J.
Multiple Inheritance in Contemporary Programming Languages,
September 1984

TR-329 Sacks, E.
Qualitative Mathematical Reasoning, November 1984

TR-330 Sarin, S.K.
Interactive On-Line Conferences, Ph.D. Dissertation/June 1984

TR-331 Sollins, K.R.
Distributed Name Management, Ph.D. Dissertation/February 1985

TR-332 Culler, D.E.
Resource Management for the Tagged Token Dataflow Architecture,
S.M. Thesis/January 1985

TR-333 Arnold, J.M.
Parallel Simulation of Digital LSI Circuits, S.M. Thesis/April 1984

TR-335 Lundelius, J.
Synchronizing Clocks in a Distributed System, S.M. Thesis/August
1984

TR-336 Trilling, S.
Some Implications of Complexity Theory on Pseudo-Random Bit
Generation, S.M. Thesis/January 1985

TR-337 Seiler, L.D.
A Hardware Assisted Methodology for VLSI Design Rule Checking,
Ph.D. Dissertation/February 1985

TR-338 Koton, P.A.
Towards a Problem Solving System for Molecular Genetics, May 1985

TR-339 Soley, R.M.
Generic Software for Emulating Multiprocessor Architectures, A
Thesis/ May 1985

TR-340 Wellman, M.P.
Reasoning About Preference Models, S.M. Thesis/May 1985

TR-341 Boughton, G.A.

283

PUBLICATIONS

Routing Networks for Packet Communication Systems, Ph.D.
Dissertation/ August 1984

TR-342 Stark, E.W.
Foundations of a Theory of Specification for Distributed Systems,
Ph.D. Dissertation/August 1984

TR-343 Forgaard, R.
A Program for Generating and Analyzing Term Rewriting Systems,
S.M. Thesis/ September 1984

TR-351 Bhatt, S.N.
The Complexity of Graph Layout and Channel routing for VLSI,
Ph.D. Disserta- tion/February 1984

TR-355 Guharoy, B.
Data Structure Management in a Data Flow Compter System, S.M.
Thesis/May 1985

264

PUBLICATIONS

Progress Reports

1. Project MAC Progress Report I, to July 1964, AD 465-088

2. Project MAC Progress Report II, July 1964-July 1965, AD 629-494

3. Project MAC Progress Report III, July 1965-July 1966, AD 648-346

4. Project Mac Progress Report IV, July 1966-July 1967, AD 681-342

5. Project MAC Progress Report V, July 1967-July 1968, AD 687-770

6. Project MAC Progress Report VI, July 1968-July 1969, AD 705-434

7. Project MAC Progress Report VII, July 1969-July 1970, AD 732-767

8. Project MAC Progress Report VIII, July 1970-July 1971, AD 735-148

9. Project MAC Progress Report IX, July 1971-July 1972, AD 756-689

10. Project MAC Progress Report X, July 1972-July 1973, AD 771-428

11. Project MAC Progress Report XI, July 1973-July 1974, AD A004-966

12. Laboratory for Computer Science Progress Report XII, July 1974-July 1975,
AD A024-527

13. Laboratory for Computer Science Progress Report XIII, July 1975-July 1976,
AD A061-246

14. Laboratory for Computer Science Progress Report XIV, July 1976-July 1977,
AD A061-932

15. Laboratory for Computer Science Progress Report 15, July 1977-July 1978,
AD A073-958

265

PUBLICATIONS

16. Laboratory for Computer Science Progress Report 16, July 1978-July 1979,
AD A088-355

17. Laboratory for Computer Science Progress Report 17, July 1979-July 1980,
AD A093-384

18. Laboratory for Computer Science Progress Report 18, July 1980-June 1981,
A 127586

19. Laboratory for Computer Science Progress Report 19, July 1981-June 1982,
A 143429

20. Laboratory for Computer Science Progress Report 20, July 1982-June 1983,
A 145134

21. Laboratory for Computer Science Progress Report 21, July 1983-June 1984,
A 154810

Copies of all reports with A, AD, or PB numbers listed in Publications may be secured
from the National Technical Information Service, U.S. Department of Commerce,
Reports Division, 5285 Port Royal Road, Springfield, Virginia 22161 (tel: 703-487-4650).
Prices vary. The reference number must be supplied with the request.

286

OFFICIAL DISTRIBUTION LIST

DIRECTOR 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency (DARPA)
1400 Wilson Boulevard
Arlington, VA 22209

OFFICE OF NAVAL RESEARCH 2 copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. Gary Koop, Code 433

DIRECTOR, CODE 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

DEFENSE TECHNICAL INFORMATION CENTER 12 copies
Cameron Station
Alexandria, VA 22314

NATIONAL SCIENCE FOUNDATION 2 copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Atm: Program Director

HEAD, CODE 38 1 copy
Research Department
Naval Weapons Center
China Lake, CA 93555

9.

I I I I I I i

